Tensor Gaussian Process with Contraction for Tensor Regression

Hu Sun ${ }^{1}$, Ward Manchester ${ }^{2}$, Meng Jin ${ }^{3}$, Yang Liu ${ }^{4}$, Yang Chen ${ }^{1}$
${ }^{1}$ Department of Statistics, University of Michigan, Ann Arbor
${ }^{2}$ Climate and Space Sciences and Engineering (CLASP), University of Michigan, Ann Arbor
${ }^{3}$ Solar \& Astrophysics Lab, Lockheed Martin
${ }^{4}$ W.W. Hansen Experimental Physics Lab, Stanford University

March 9, 2023

Scalar-on-Tensor Regression Problem

- Data: $\left\{\mathcal{X}_{i}, y_{i}\right\}_{i=1}^{n}$, where:
- $\left\{\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n}\right\}: m$-mode tensor covariates of size $I_{1} \times I_{2} \times \ldots \times I_{m}$.
- $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$: scalar regression labels.

Scalar-on-Tensor Regression Problem

- Data: $\left\{\mathcal{X}_{i}, y_{i}\right\}_{i=1}^{n}$, where:
- $\left\{\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n}\right\}: m$-mode tensor covariates of size $I_{1} \times I_{2} \times \ldots \times I_{m}$.
- $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$: scalar regression labels.
- Classic Scalar-on-Tensor Regression Model:

$$
\begin{equation*}
\mathbb{E}[y \mid \mathcal{X}]=\alpha+\langle\mathcal{W}, \mathcal{X}\rangle \tag{1}
\end{equation*}
$$

where the regression coefficient $\mathcal{W} \in \mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{m}}$ matches the size of the tensor covariates \mathcal{X}.

Scalar-on-Tensor Regression Problem

- Data: $\left\{\mathcal{X}_{i}, y_{i}\right\}_{i=1}^{n}$, where:
- $\left\{\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n}\right\}: m$-mode tensor covariates of size $I_{1} \times I_{2} \times \ldots \times I_{m}$.
- $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$: scalar regression labels.
- Classic Scalar-on-Tensor Regression Model:

$$
\begin{equation*}
\mathbb{E}[y \mid \mathcal{X}]=\alpha+\langle\mathcal{W}, \mathcal{X}\rangle \tag{1}
\end{equation*}
$$

where the regression coefficient $\mathcal{W} \in \mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{m}}$ matches the size of the tensor covariates \mathcal{X}.

- Model Dimensionality p :

$$
\begin{equation*}
\mathbb{E}[y \mid \mathcal{X}]=\alpha+\operatorname{vec}(\mathcal{X})^{\top} \underbrace{\operatorname{vec}(\mathcal{W})}_{p=\prod_{j=1}^{m} I_{j}} \tag{2}
\end{equation*}
$$

and the dimensionality p increases very quickly as the tensor size grows in any mode.

An Astrophysics Example of Scalar-on-Tensor Regression

An Astrophysics Example of Scalar-on-Tensor Regression

Figure: Tensor Data (size $=201 \times 201 \times 10$) of the Selected Event .

Low-Rankness Assumption of \mathcal{W}

- Previous works (e.g. [1], [2]) propose to reduce the dimensionality of \mathcal{W}, i.e. the regression coefficient tensor, via a low-rankness assumption:

Low-Rankness Assumption of \mathcal{W}

- Previous works (e.g. [1], [2]) propose to reduce the dimensionality of \mathcal{W}, i.e. the regression coefficient tensor, via a low-rankness assumption:
- CP-decomposition:

$$
\mathcal{W}=\sum_{r=1}^{R} \boldsymbol{\beta}_{1}^{(r)} \circ \boldsymbol{\beta}_{2}^{(r)} \circ \ldots \circ \boldsymbol{\beta}_{m}^{(r)}
$$

where R is the rank of the tensor, and \circ is vector outer product.

Low-Rankness Assumption of \mathcal{W}

- Previous works (e.g. [1], [2]) propose to reduce the dimensionality of \mathcal{W}, i.e. the regression coefficient tensor, via a low-rankness assumption:
- CP-decomposition:

$$
\mathcal{W}=\sum_{r=1}^{R} \boldsymbol{\beta}_{1}^{(r)} \circ \boldsymbol{\beta}_{2}^{(r)} \circ \ldots \circ \boldsymbol{\beta}_{m}^{(r)}
$$

where R is the rank of the tensor, and \circ is vector outer product.

- Tucker-decomposition:

$$
\mathcal{W}=\mathcal{S} \times_{1} \mathbf{U}_{1}^{\top} \times_{2} \mathbf{U}_{2}^{\top} \times_{3} \ldots \times_{m} \mathbf{U}_{m}^{\top}
$$

where \mathcal{S} is a "core" tensor of size $I_{1}^{\prime} \times I_{2}^{\prime} \times \ldots \times I_{m}^{\prime}$, where $I_{j}^{\prime} \ll I_{j}$, and \times_{j} is the $j^{\text {th }}$-mode product. \mathbf{U}_{j} is an $I_{j}^{\prime} \times I_{j}$ orthogonal matrix with $\mathbf{U}_{j} \mathbf{U}_{j}^{\top}=\mathbf{I}_{I_{j}^{\prime}}$.

Tensor Gaussian Process Regression

- Given the Tucker Decomposition on \mathcal{W} :

$$
\mathcal{W}=\mathcal{S} \times_{1} \mathbf{U}_{1}^{\top} \times_{2} \mathbf{U}_{2}^{\top} \times_{3} \ldots \times_{m} \mathbf{U}_{m}^{\top}
$$

- Further assume that \mathcal{S} has a Gaussian prior:

$$
\begin{equation*}
\operatorname{vec}(\mathcal{S}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d^{\prime}}\right), \quad d^{\prime}=\prod_{j=1}^{m} I_{j}^{\prime} \tag{3}
\end{equation*}
$$

- Then for any pair of tensor data $\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$:

$$
\operatorname{Cov}\left[\left\langle\mathcal{W}, \mathcal{X}_{1}\right\rangle,\left\langle\mathcal{W}, \mathcal{X}_{2}\right\rangle\right]=\operatorname{vec}\left(\mathcal{X}_{1}\right)^{\top}\left(\mathbf{U}_{m}^{\top} \mathbf{U}_{m} \otimes \mathbf{U}_{m-1}^{\top} \mathbf{U}_{m-1} \otimes \ldots \otimes \mathbf{U}_{1}^{\top} \mathbf{U}_{1}\right) \operatorname{vec}\left(\mathcal{X}_{2}\right)
$$

where \otimes is the matrix Kronecker product.

Tensor Gaussian Process Regression

- Tensor Gaussian Process (Tensor-GP) [3] is defined as:

$$
\begin{aligned}
y & =f(\mathcal{X})+\epsilon & & \text { (Likelihood) } \\
f(.) & \sim \mathbf{G P}(0, K(., .)) & & \text { (Gaussian Process Prior) } \\
K\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right) & =\operatorname{vec}\left(\mathcal{X}_{1}\right)^{\top}\left[\otimes_{j=1}^{m} \mathbf{K}_{m-j}\right] \operatorname{vec}\left(\mathcal{X}_{2}\right) & & \text { (Multi-Linear Kernel) } \\
\epsilon & \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) & & \text { (Additive Noise) }
\end{aligned}
$$

with kernel hyperparameters in red, and each \mathbf{K}_{m-j} is low-ranked with $\mathbf{K}_{m-j}=\mathbf{U}_{m-j}^{\top} \mathbf{U}_{m-j}$.

Overview of Our Work

In this work:

- we consider a special type of 3-mode tensor: multi-channel image.
- $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$, with H : height, W : width, C : channel (modality).

Overview of Our Work

In this work:

- we consider a special type of 3-mode tensor: multi-channel image.
- $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$, with H : height, W : width, C : channel (modality).
- we model the scalar-on-tensor regression problem in two successive steps:

Overview of Our Work

In this work:

- we consider a special type of 3-mode tensor: multi-channel image.
- $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$, with H : height, W : width, C : channel (modality).
- we model the scalar-on-tensor regression problem in two successive steps:
(1) (tensor contraction) For each $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$, we estimate a latent tensor $\mathcal{Z} \in \mathbb{R}^{h \times w \times C}$ via:

$$
\begin{equation*}
\mathcal{Z}=h(\mathcal{X})=\mathcal{X} \times_{1} \mathbf{A}_{h \times H} \times_{2} \mathbf{B}_{w \times W} \times_{3} \mathbf{I}_{C} \tag{3}
\end{equation*}
$$

and $h \ll H, w \ll W$.

Overview of Our Work

In this work:

- we consider a special type of 3-mode tensor: multi-channel image.
- $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$, with H : height, W : width, C : channel (modality).
- we model the scalar-on-tensor regression problem in two successive steps:
(1) (tensor contraction) For each $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$, we estimate a latent tensor $\mathcal{Z} \in \mathbb{R}^{h \times w \times C}$ via:

$$
\begin{equation*}
\mathcal{Z}=h(\mathcal{X})=\mathcal{X} \times_{1} \mathbf{A}_{h \times H} \times_{2} \mathbf{B}_{w \times W} \times_{3} \mathbf{I}_{C} \tag{3}
\end{equation*}
$$

and $h \ll H, w \ll W$.
(2) (tensor regression) We model the GP regression problem over the set of latent tensors:

$$
\begin{aligned}
y & =g \circ h(\mathcal{X})+\epsilon, \quad g(.) \sim \mathbf{G P}(0, K(., .)) \\
K\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right) & =\operatorname{vec}\left(\mathcal{Z}_{1}\right)^{\top}\left(\mathbf{K}_{3} \otimes \mathbf{K}_{2} \otimes \mathbf{K}_{1}\right) \operatorname{vec}\left(\mathcal{Z}_{2}\right)
\end{aligned}
$$

Tensor Contraction

- Tensor contraction is an operation that reduces the size of an input tensor data while keeping the tensor format of the data.

Tensor Contraction

- Tensor contraction is an operation that reduces the size of an input tensor data while keeping the tensor format of the data.
- For multi-channel tensor \mathcal{X}, tensor contraction is conducted via:

$$
\mathcal{Z}=\mathcal{X} \times_{1} \mathbf{A}_{h \times H} \times_{2} \mathbf{B}_{w \times W} \times_{3} \mathbf{I}_{C}
$$

and tensor shape is reduced from $(H \times W \times C)$ to $(h \times w \times C)$.

Tensor Contraction

- Tensor contraction is an operation that reduces the size of an input tensor data while keeping the tensor format of the data.
- For multi-channel tensor \mathcal{X}, tensor contraction is conducted via:

$$
\mathcal{Z}=\mathcal{X} \times_{1} \mathbf{A}_{h \times H} \times_{2} \mathbf{B}_{w \times W} \times_{3} \mathbf{I}_{C}
$$

and tensor shape is reduced from $(H \times W \times C)$ to $(h \times w \times C)$.

- For each channel $c \in[C]:=\{1,2, \ldots, C\}$:

$$
\mathcal{Z}^{(c)}=\mathbf{A} \mathcal{X}^{(c)} \mathbf{B}^{\top}
$$

where $\mathcal{Z}^{(c)}, \mathcal{X}^{(c)}$ are the c-th channel of \mathcal{Z} and \mathcal{X}.

Tensor Contraction

- Tensor contraction is an operation that reduces the size of an input tensor data while keeping the tensor format of the data.
- For multi-channel tensor \mathcal{X}, tensor contraction is conducted via:

$$
\mathcal{Z}=\mathcal{X} \times_{1} \mathbf{A}_{h \times H} \times_{2} \mathbf{B}_{w \times W} \times_{3} \mathbf{I}_{C}
$$

and tensor shape is reduced from $(H \times W \times C)$ to $(h \times w \times C)$.

- For each channel $c \in[C]:=\{1,2, \ldots, C\}$:

$$
\mathcal{Z}^{(c)}=\mathbf{A} \mathcal{X}^{(c)} \mathbf{B}^{\top}
$$

where $\mathcal{Z}^{(c)}, \mathcal{X}^{(c)}$ are the c-th channel of \mathcal{Z} and \mathcal{X}.

- For each (s, t)-th element of $\mathcal{Z}^{(c)}$:

$$
\mathcal{Z}^{(c)}(s, t)=\mathbf{A}(s,:) \mathcal{X}^{(c)}[\mathbf{B}(t,:)]^{\top}=\langle\underbrace{[\mathbf{A}(s,:)]^{\top}[\mathbf{B}(t,:)]}_{\text {rank-1 feature map } \mathbf{W}_{s t}}, \mathcal{X}^{(c)}\rangle
$$

Example of Tensor Contraction

Example of Tensor Contraction

- In the data tensor \mathcal{X}, pixels of $\mathcal{X}^{(c)}$ on the $s^{\text {th }}$ row or $t^{\text {th }}$ column share the same spatial coordinates.
- In the latent tensor \mathcal{Z}, pixels of $\mathcal{Z}^{(c)}$ on the $s^{\text {th }}$ row or $t^{\text {th }}$ column share the same feature map basis vector in \mathbf{A} or \mathbf{B}.
- Typically, we want to extract features from imaging data from spatially-contiguous regions.

Interpretable Tensor Contraction with Total-Variation Regularization

- Typically, we want to extract features from imaging data from spatially-contiguous regions.
- In tensor contraction, recall:

$$
\mathcal{Z}^{(c)}(s, t)=\mathbf{A}(s,:) \mathcal{X}^{(c)}[\mathbf{B}(t,:)]^{\top}=\left\langle\mathbf{W}_{s t}, \mathcal{X}^{(c)}\right\rangle
$$

Interpretable Tensor Contraction with Total-Variation Regularization

- Typically, we want to extract features from imaging data from spatially-contiguous regions.
- In tensor contraction, recall:

$$
\mathcal{Z}^{(c)}(s, t)=\mathbf{A}(s,:) \mathcal{X}^{(c)}[\mathbf{B}(t,:)]^{\top}=\left\langle\mathbf{W}_{s t}, \mathcal{X}^{(c)}\right\rangle
$$

- To make $\mathbf{W}_{\text {st }}$ sparse and smooth, we introduce the anisotropic total-variation (TV) penalty [4] over $\mathbf{W}_{s t}$:

$$
\begin{equation*}
\left\|\mathbf{W}_{s t}\right\|_{\mathrm{TV}}=\left\|\nabla_{x} \mathbf{W}_{s t}\right\|_{1}+\left\|\nabla_{y} \mathbf{W}_{s t}\right\|_{1} \tag{4}
\end{equation*}
$$

where ∇_{x}, ∇_{y} are gradient operators along the row and column direction.

Interpretable Tensor Contraction with Total-Variation Regularization

- Typically, we want to extract features from imaging data from spatially-contiguous regions.
- In tensor contraction, recall:

$$
\mathcal{Z}^{(c)}(s, t)=\mathbf{A}(s,:) \mathcal{X}^{(c)}[\mathbf{B}(t,:)]^{\top}=\left\langle\mathbf{W}_{s t}, \mathcal{X}^{(c)}\right\rangle
$$

- To make $\mathbf{W}_{\text {st }}$ sparse and smooth, we introduce the anisotropic total-variation (TV) penalty [4] over $\mathbf{W}_{s t}$:

$$
\begin{equation*}
\left\|\mathbf{W}_{s t}\right\|_{\mathrm{TV}}=\left\|\nabla_{x} \mathbf{W}_{s t}\right\|_{1}+\left\|\nabla_{y} \mathbf{W}_{s t}\right\|_{1} \tag{4}
\end{equation*}
$$

where ∇_{x}, ∇_{y} are gradient operators along the row and column direction.

- Fortunately, the TV penalty has an elegant form under our tensor setup:

$$
\begin{equation*}
\sum_{s, t}\left\|\mathbf{W}_{s t}\right\|_{\mathrm{TV}}=\|\mathbf{A}\|_{1} \cdot\left\|\nabla_{x} \mathbf{B}\right\|_{1}+\left\|\nabla_{x} \mathbf{A}\right\|_{1} \cdot\|\mathbf{B}\|_{1} \tag{5}
\end{equation*}
$$

Complete Framework-Model

- Coupling tensor contraction with tensor GP, we end up with our Tensor-GP with Spatial Transformation (Tensor-GPST) model:

$$
\begin{aligned}
y & =g \circ h(\mathcal{X})+\epsilon \\
f(.) & =g \circ h(.) \sim \mathbf{G P}(0, \widetilde{K}(., .)) \\
\widetilde{K}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right) & =\operatorname{vec}\left(\mathcal{X}_{1}\right)^{\top}\left[\widetilde{\mathbf{U}}^{\top} \widetilde{\mathbf{U}}\right] \operatorname{vec}\left(\mathcal{X}_{2}\right)
\end{aligned}
$$

where $\widetilde{\mathbf{U}}=\left(\mathbf{U}_{3} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{1}\right)\left(\mathbf{I}_{C} \otimes \mathbf{B} \otimes \mathbf{A}\right), g$ is the latent tensor GP, h is the tensor contraction.

Complete Framework-Estimation

- We estimate the kernel hyperparameters via penalized maximum marginal likelihood (Empirical Bayes):

$$
\begin{equation*}
\min _{(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)} L(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)=-\ell(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)+\lambda \sum_{s, t}\left\|\mathbf{W}_{s t}\right\|_{\mathrm{TV}} \tag{6}
\end{equation*}
$$

where $\boldsymbol{\theta}=\left\{\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}\right\}, \boldsymbol{\eta}=\{\mathbf{A}, \mathbf{B}\}$.

Complete Framework-Estimation

- We estimate the kernel hyperparameters via penalized maximum marginal likelihood (Empirical Bayes):

$$
\begin{equation*}
\min _{(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)} L(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)=-\ell(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)+\lambda \sum_{s, t}\left\|\mathbf{W}_{s t}\right\|_{\mathrm{TV}} \tag{6}
\end{equation*}
$$

where $\boldsymbol{\theta}=\left\{\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}\right\}, \boldsymbol{\eta}=\{\mathbf{A}, \mathbf{B}\}$.

- More specifically:

$$
\begin{aligned}
L(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma) & =\frac{1}{2} \ln \left|\mathbf{K}_{\boldsymbol{\theta}, \boldsymbol{\eta}}+\sigma^{2} \mathbf{I}_{n}\right|+\frac{1}{2} \mathbf{y}^{\top}\left(\mathbf{K}_{\boldsymbol{\theta}, \boldsymbol{\eta}}+\sigma^{2} \mathbf{I}_{n}\right)^{-1} \mathbf{y} \\
& +\lambda\left(\|\mathbf{A}\|_{1} \cdot\left\|\nabla_{x} \mathbf{B}\right\|_{1}+\left\|\nabla_{x} \mathbf{A}\right\|_{1} \cdot\|\mathbf{B}\|_{1}\right)
\end{aligned}
$$

where $\mathbf{K}_{\boldsymbol{\theta}, \boldsymbol{\eta}}$ is the $n \times n$ empirical gram matrix.

Algorithm: Block-Coordinate Proximal Gradient Descent

- We cyclically apply gradient-based updates on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ and σ.

Algorithm: Block-Coordinate Proximal Gradient Descent

- We cyclically apply gradient-based updates on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ and σ.
- As for \mathbf{A} (similarly for \mathbf{B}), we further break down to two steps:
(1) Propose a gradient update $\widetilde{\mathbf{A}}$ via gradient descent:

$$
\widetilde{\mathbf{A}} \leftarrow \mathbf{A}-\alpha \cdot \underbrace{\nabla_{\mathbf{A}} \ell(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)}_{\text {tractable thanks to the Woodbury identity }}
$$

(2) The proximal step becomes multiple parallel fused-lasso [5] problem. For the $s^{\text {th }}$ row of A:

$$
\begin{equation*}
\widehat{\mathbf{A}}(s,:)=\underset{\mathbf{x}}{\arg \min } \frac{1}{2 \alpha}\|\mathbf{x}-\widetilde{\mathbf{A}}(s,:)\|^{2}+\left(\lambda\left\|\nabla_{x} \widehat{\mathbf{B}}\right\|_{1}\right) \cdot\|\mathbf{x}\|_{1}+\left(\lambda\|\widehat{\mathbf{B}}\|_{1}\right) \cdot\left\|\nabla_{x} \mathbf{x}\right\|_{1} \tag{7}
\end{equation*}
$$

note how the sparsity and smoothness of \mathbf{A} is regularized by the smoothness and sparsity of B.

Algorithm: Block-Coordinate Proximal Gradient Descent

- We cyclically apply gradient-based updates on $\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}$ and σ.
- As for \mathbf{A} (similarly for \mathbf{B}), we further break down to two steps:
(1) Propose a gradient update $\widetilde{\mathbf{A}}$ via gradient descent:

$$
\widetilde{\mathbf{A}} \leftarrow \mathbf{A}-\alpha \cdot \underbrace{\nabla_{\mathbf{A}} \ell(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)}_{\text {tractable thanks to the Woodbury identity }}
$$

(2) The proximal step becomes multiple parallel fused-lasso [5] problem. For the $s^{\text {th }}$ row of A:

$$
\begin{equation*}
\widehat{\mathbf{A}}(s,:)=\underset{\mathbf{x}}{\arg \min } \frac{1}{2 \alpha}\|\mathbf{x}-\widetilde{\mathbf{A}}(s,:)\|^{2}+\left(\lambda\left\|\nabla_{x} \widehat{\mathbf{B}}\right\|_{1}\right) \cdot\|\mathbf{x}\|_{1}+\left(\lambda\|\widehat{\mathbf{B}}\|_{1}\right) \cdot\left\|\nabla_{x} \mathbf{x}\right\|_{1} \tag{7}
\end{equation*}
$$

note how the sparsity and smoothness of \mathbf{A} is regularized by the smoothness and sparsity of B.

- We update one parameter at a time following the order:
$\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{U}_{1} \rightarrow \mathbf{U}_{2} \rightarrow \mathbf{U}_{3} \rightarrow \sigma \rightarrow \mathbf{A} \rightarrow \ldots$ until convergence.

Algorithm: Convergence Analysis

- Under some mild conditions, after $(K+1)$ iterations, we have the following bounds on the loss function $L(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)$ from its global minimum $L\left(\boldsymbol{\theta}^{*}, \boldsymbol{\eta}^{*}, \sigma^{*}\right)$:

$$
\begin{array}{ll}
4(K+1)\left(L\left(\widehat{\boldsymbol{\theta}}^{(K+1)}, \widehat{\boldsymbol{\eta}}^{(K+1)}, \widehat{\sigma}^{(K+1)}\right)-L\left(\boldsymbol{\theta}^{*}, \boldsymbol{\eta}^{*}, \sigma^{*}\right)\right) & \\
\leq c^{-1} \delta^{(0)} & \text { (initialization error) } \\
+\sum_{k=0}^{K} h_{\lambda}\left(\left\|\widehat{\boldsymbol{\eta}}^{(K+1)}-\boldsymbol{\eta}^{*}\right\|_{1}\right) & \text { (due to TV Penalty) } \\
+c^{-1} \sum_{k=0}^{K} \tau\left(\left\|\widehat{\boldsymbol{\theta}}^{(K+1)}-\boldsymbol{\theta}^{*}\right\|_{2},\left\|\widehat{\boldsymbol{\eta}}^{(K+1)}-\boldsymbol{\eta}^{*}\right\|_{2}\right) & \text { (due to coordinate descent) }
\end{array}
$$

Algorithm: Convergence Analysis

- Under some mild conditions, after $(K+1)$ iterations, we have the following bounds on the loss function $L(\boldsymbol{\theta}, \boldsymbol{\eta}, \sigma)$ from its global minimum $L\left(\boldsymbol{\theta}^{*}, \boldsymbol{\eta}^{*}, \sigma^{*}\right)$:

$$
\begin{array}{ll}
4(K+1)\left(L\left(\widehat{\boldsymbol{\theta}}^{(K+1)}, \widehat{\boldsymbol{\eta}}^{(K+1)}, \widehat{\sigma}^{(K+1)}\right)-L\left(\boldsymbol{\theta}^{*}, \boldsymbol{\eta}^{*}, \sigma^{*}\right)\right) & \\
\leq c^{-1} \delta^{(0)} & \text { (initialization error) } \\
+\sum_{k=0}^{K} h_{\lambda}\left(\left\|\widehat{\boldsymbol{\eta}}^{(K+1)}-\boldsymbol{\eta}^{*}\right\|_{1}\right) & \text { (due to TV Penalty) } \\
+c^{-1} \sum_{k=0}^{K} \tau\left(\left\|\widehat{\boldsymbol{\theta}}^{(K+1)}-\boldsymbol{\theta}^{*}\right\|_{2},\left\|\widehat{\boldsymbol{\eta}}^{(K+1)}-\boldsymbol{\eta}^{*}\right\|_{2}\right) & \text { (due to coordinate descent) }
\end{array}
$$

- This result states that the algorithm converges to a local minimum at a rate of $\mathcal{O}(1 / K)$, and we confirmed this empirically.

Application to Solar Flare Intensity Forecasting

- Model:

$$
\begin{equation*}
y_{i}=g \circ h\left(\mathcal{X}_{i}\right)+\epsilon \tag{8}
\end{equation*}
$$

- y_{i} : solar flare intensity
- $\mathcal{X}_{i}:(H, W, C)=(50,50,10)$ AIA-HMI imaging dataset
- $n=1,329$ samples of M/X-class $\left(n_{\mathrm{M} / \mathrm{X}}=479\right)$ and B-class $\left(n_{\mathrm{B}}=850\right)$.
- set the contracted tensor size as $3 \times 3 \times 10$.
- chronologically splits the data into train/test.

Application to Solar Flare Intensity Forecasting

- Model:

$$
\begin{equation*}
y_{i}=g \circ h\left(\mathcal{X}_{i}\right)+\epsilon \tag{8}
\end{equation*}
$$

- y_{i} : solar flare intensity
- $\mathcal{X}_{i}:(H, W, C)=(50,50,10)$ AIA-HMI imaging dataset
- $n=1,329$ samples of M/X-class $\left(n_{\mathrm{M} / \mathrm{X}}=479\right)$ and B-class $\left(n_{\mathrm{B}}=850\right)$.
- set the contracted tensor size as $3 \times 3 \times 10$.
- chronologically splits the data into train/test.
- g : the Tensor Gaussian Process on the $3 \times 3 \times 10$ latent tensors.
- h : the Tensor Contraction layer for dimensionality reduction.

Channel Average Tensor: B-class Solar Flare

Figure: Channel-wise Average for all B-class flares, each image is of size 50×50.

Channel Average Tensor: M-class Solar Flare

Figure: Channel-wise Average for all M/X-class flares, each image is of size 50×50.

Fitted Parameter for \widehat{h} (Tensor Contraction)

Figure: Pixels with non-zero tensor contraction weights. Plotted with M-class channel average. MSSISS 2023

Tensor-GP with Contraction for Tensor Regression

[^0]Fitted Parameter for \widehat{h} (Tensor Contraction)

Figure: Pixels with tensor contraction weights $>5 \times 10^{-3}$. Plotted with M-class channel average. MSSISS 2023

Tensor-GP with Contraction for Tensor Regression
March 9, $2023 \quad 17 / 23$

Fitted Parameter for \widehat{h} (Tensor Contraction)

Variance Decomposition for \widehat{g} (GP)

- Recall that the multi-linear kernel of $g(.) \sim \mathbf{G P}(0, K(.,)$.$) is:$

$$
\begin{equation*}
K\left(\widehat{h}\left(\mathcal{X}_{1}\right), \widehat{h}\left(\mathcal{X}_{2}\right)\right)=\operatorname{vec}\left(\widehat{h}\left(\mathcal{X}_{1}\right)\right)^{\top}\left[\mathbf{K}_{3} \otimes \mathbf{K}_{2} \otimes \mathbf{K}_{1}\right] \operatorname{vec}\left(\widehat{h}\left(\mathcal{X}_{2}\right)\right) \tag{9}
\end{equation*}
$$

Variance Decomposition for \widehat{g} (GP)

- Recall that the multi-linear kernel of $g(.) \sim \mathbf{G P}(0, K(.,)$.$) is:$

$$
\begin{equation*}
K\left(\widehat{h}\left(\mathcal{X}_{1}\right), \widehat{h}\left(\mathcal{X}_{2}\right)\right)=\operatorname{vec}\left(\widehat{h}\left(\mathcal{X}_{1}\right)\right)^{\top}\left[\mathbf{K}_{3} \otimes \mathbf{K}_{2} \otimes \mathbf{K}_{1}\right] \operatorname{vec}\left(\widehat{h}\left(\mathcal{X}_{2}\right)\right) \tag{9}
\end{equation*}
$$

- Equivalently:
$\operatorname{Cov}\left(y_{1}, y_{2}\right)=$

$$
\begin{aligned}
& \sum_{\substack{\left(s_{1}, t_{1}, c_{1}\right) \\
\left(s_{2}, t_{2}, c_{2}\right)}}^{h, w, C} \underbrace{\mathbf{K}_{1}\left(s_{1}, s_{2}\right) \cdot \mathbf{K}_{2}\left(t_{1}, t_{2}\right)}_{\text {Feature Map Importance }} \times \overbrace{\mathbf{K}_{3}\left(c_{1}, c_{2}\right)}^{\text {Channel Importance }} \times \underbrace{\left\langle\mathbf{W}_{s_{1}, t_{1}}, \mathcal{X}_{1}^{\left(c_{1}\right)}\right\rangle \cdot\left\langle\mathbf{W}_{s_{2}, t_{2}}, \mathcal{X}_{2}^{\left(c_{2}\right)}\right\rangle}_{\text {Latent Features Similarity }} \\
& +\delta_{12} \cdot \underbrace{\sigma^{2}}_{\text {Noise }}
\end{aligned}
$$

Fitted Parameter for \widehat{g} (GP)

Figure: Estimates for $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{3}$ of the latent tensor GP \widehat{g}.

Fitted Parameter for \widehat{g} (GP)

Figure: Channel (left) and feature map (right) $\%$ of explained variation of the latent tensor GP \widehat{g}.

Tensor Regression Result: Chronological Split

Model	MSE	R^{2}	$\mathrm{P}_{\text {cover }}$	TSS	$\widehat{\sigma}$
Tensor-GP	0.405	0.374	0.969	0.511	0.662
	0.978	0.184	0.920	0.309	
Tensor-GPST $(\lambda=0.1)$	$\mathbf{0 . 3 9 2}$	$\mathbf{0 . 3 9 4}$	0.968	$\mathbf{0 . 5 1 8}$	0.634
	0.772	0.220	0.900	0.366	
Tensor-GPST $(\lambda=0.5)$	0.429	0.337	$\mathbf{0 . 9 7 0}$	0.448	0.661
	$\mathbf{0 . 6 1 1}$	0.269	$\mathbf{0 . 9 5 7}$	$\mathbf{0 . 4 3 2}$	
Tensor-GPST $(\lambda=1)$	0.414	0.361	0.960	0.476	0.649
	0.720	0.235	0.925	0.338	
$\mathbf{C P}$	0.452	0.303	-	0.438	-
	0.648	$\mathbf{0 . 3 1 0}$		0.400	
Tucker	0.462	0.287		0.428	-
	0.655	0.301		0.400	

Table: Training (top) and testing (bottom) performances. Metrics: MSE: Mean-Squared Error; R^{2} : R-squared; $\mathrm{P}_{\text {cover }}$: coverage probability; TSS: True Skill Statistics.

Future Research Topics

- Identifiability issue between $g($.$) and h($.$) .$
- Scalable GP regression with stochastic variational inference.
- Enable the model to handle binary responses.
- Account for image transformation (e.g. rotate, shift, shear) invariance in the tensor kernel.

Summary of the Talk

In this talk, we:

- propose a scalar-on-tensor Gaussian Process Regression (GPR) model:

$$
y=g \circ h(\mathcal{X})+\epsilon
$$

where:

Summary of the Talk

In this talk, we:

- propose a scalar-on-tensor Gaussian Process Regression (GPR) model:

$$
y=g \circ h(\mathcal{X})+\epsilon
$$

where:

- $h($.$) : condense the tensor data to a latent tensor via tensor contraction.$

Summary of the Talk

In this talk, we:

- propose a scalar-on-tensor Gaussian Process Regression (GPR) model:

$$
y=g \circ h(\mathcal{X})+\epsilon
$$

where:

- $h($.$) : condense the tensor data to a latent tensor via tensor contraction.$
- $g($.$) : use multi-linear kernel to do GPR in the latent tensor space.$

Summary of the Talk

In this talk, we:

- propose a scalar-on-tensor Gaussian Process Regression (GPR) model:

$$
y=g \circ h(\mathcal{X})+\epsilon
$$

where:

- $h($.$) : condense the tensor data to a latent tensor via tensor contraction.$
- $g($.$) : use multi-linear kernel to do GPR in the latent tensor space.$
- introduce an ℓ_{1} Total-Variation (TV) Penalty over $h($.$) for interpretable tensor$ dimension reduction, and propose a coordinate proximal gradient descent method for estimation.

Summary of the Talk

In this talk, we:

- propose a scalar-on-tensor Gaussian Process Regression (GPR) model:

$$
y=g \circ h(\mathcal{X})+\epsilon
$$

where:

- $h($.$) : condense the tensor data to a latent tensor via tensor contraction.$
- $g($.$) : use multi-linear kernel to do GPR in the latent tensor space.$
- introduce an ℓ_{1} Total-Variation (TV) Penalty over $h($.$) for interpretable tensor$ dimension reduction, and propose a coordinate proximal gradient descent method for estimation.
- demonstrate the effectiveness via a solar flare intensity forecasting application.

References I

[1] H. Zhou, L. Li, and H. Zhu, "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, vol. 108, no. 502, pp. 540-552, 2013.
[2] X. Li, D. Xu, H. Zhou, and L. Li, "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, vol. 10, no. 3, pp. 520-545, 2018.
[3] R. Yu, G. Li, and Y. Liu, "Tensor Regression meets Gaussian Processes," in International Conference on Artificial Intelligence and Statistics, PMLR, 2018, pp. 482-490.
[4] X. Wang, H. Zhu, and A. D. N. Initiative, "Generalized Scalar-on-Image Regression Models via Total Variation," Journal of the American Statistical Association, vol. 112, no. 519, pp. 1156-1168, 2017.
[5] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, "Pathwise Coordinate Optimization," The Annals of Applied Statistics, vol. 1, no. 2, pp. 302-332, 2007.

[^0]: March 9, $2023 \quad 17 / 23$

