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Tensor Regression & Tensor Gaussian Process

Scalar-on-Tensor Regression Problem

• Data: {Xi, yi}ni=1, where:
• {X1,X2, . . . ,Xn}: m-mode tensor covariates of size I1 × I2 × . . .× Im.
• {y1, y2, . . . , yn}: scalar regression labels.

• Classic Scalar-on-Tensor Regression Model:

E[y|X ] = α+ ⟨W,X⟩ (1)

where the regression coefficient W ∈ RI1×I2×...×Im matches the size of the tensor
covariates X .

• Model Dimensionality p:

E[y|X ] = α+ vec (X )⊤ vec (W)︸ ︷︷ ︸
p=

∏m
j=1 Ij

(2)

and the dimensionality p increases very quickly as the tensor size grows in any mode.
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Tensor Regression & Tensor Gaussian Process

An Astrophysics Example of Scalar-on-Tensor Regression
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Tensor Regression & Tensor Gaussian Process

An Astrophysics Example of Scalar-on-Tensor Regression

Figure: Tensor Data (size = 201× 201× 10) of the Selected Event.
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Tensor Regression & Tensor Gaussian Process

Low-Rankness Assumption of W

• Previous works (e.g. [1], [2]) propose to reduce the dimensionality of W, i.e. the
regression coefficient tensor, via a low-rankness assumption:

• CP-decomposition:

W =

R∑
r=1

β
(r)
1 ◦ β

(r)
2 ◦ . . . ◦ β

(r)
m

where R is the rank of the tensor, and ◦ is vector outer product.
• Tucker-decomposition:

W = S ×1 U
⊤
1 ×2 U

⊤
2 ×3 . . .×m U⊤

m

where S is a “core” tensor of size I
′

1 × I
′

2 × . . .× I
′

m, where I
′

j << Ij , and ×j is the

jth-mode product. Uj is an I
′

j × Ij orthogonal matrix with UjU
⊤
j = II′

j
.
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Tensor Regression & Tensor Gaussian Process

Tensor Gaussian Process Regression

• Given the Tucker Decomposition on W:

W = S ×1 U
⊤
1 ×2 U

⊤
2 ×3 . . .×m U⊤

m

• Further assume that S has a Gaussian prior:

vec (S) ∼ N
(
0, Id′

)
, d

′
=

m∏
j=1

I
′
j (3)

• Then for any pair of tensor data (X1,X2):

Cov [⟨W,X1⟩ , ⟨W,X2⟩] = vec (X1)
⊤
(
U⊤

mUm ⊗U⊤
m−1Um−1 ⊗ . . .⊗U⊤

1 U1

)
vec (X2)

where ⊗ is the matrix Kronecker product.
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Tensor Regression & Tensor Gaussian Process

Tensor Gaussian Process Regression

• Tensor Gaussian Process (Tensor-GP) [3] is defined as:

y = f(X ) + ϵ (Likelihood)

f(.) ∼ GP (0,K(., .)) (Gaussian Process Prior)

K(X1,X2) = vec (X1)
⊤ [
⊗m

j=1Km−j

]
vec (X2) (Multi-Linear Kernel)

ϵ
i.i.d.∼ N

(
0, σ2

)
(Additive Noise)

with kernel hyperparameters in red, and each Km−j is low-ranked with
Km−j = Um−j

⊤Um−j .

MSSISS 2023 Tensor-GP with Contraction for Tensor Regression March 9, 2023 5/23



Tensor-GP with Contraction

Overview of Our Work

In this work:

• we consider a special type of 3-mode tensor: multi-channel image.
• X ∈ RH×W×C , with H: height, W : width, C: channel (modality).

• we model the scalar-on-tensor regression problem in two successive steps:

1 (tensor contraction) For each X ∈ RH×W×C , we estimate a latent tensor Z ∈ Rh×w×C

via:
Z = h(X ) = X ×1 Ah×H ×2 Bw×W ×3 IC (3)

and h << H,w << W .
2 (tensor regression) We model the GP regression problem over the set of latent tensors:

y = g ◦ h(X ) + ϵ, g(.) ∼ GP (0,K(., .))

K(Z1,Z2) = vec (Z1)
⊤
(K3 ⊗K2 ⊗K1) vec (Z2)
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Tensor-GP with Contraction

Tensor Contraction

• Tensor contraction is an operation that reduces the size of an input tensor data
while keeping the tensor format of the data.

• For multi-channel tensor X , tensor contraction is conducted via:

Z = X ×1 Ah×H ×2 Bw×W ×3 IC

and tensor shape is reduced from (H ×W × C) to (h× w × C).

• For each channel c ∈ [C] := {1, 2, . . . , C}:

Z(c) = AX (c)B⊤

where Z(c),X (c) are the c-th channel of Z and X .
• For each (s, t)-th element of Z(c):

Z(c)(s, t) = A(s, :)X (c) [B(t, :)]⊤ =

〈
[A(s, :)]⊤ [B(t, :)]︸ ︷︷ ︸

rank-1 feature map Wst

,X (c)

〉
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Tensor-GP with Contraction

Example of Tensor Contraction
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Tensor-GP with Contraction

Example of Tensor Contraction

• In the data tensor X , pixels of X (c) on the sth row or tth column share the same
spatial coordinates.

• In the latent tensor Z, pixels of Z(c) on the sth row or tth column share the same
feature map basis vector in A or B.
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Tensor-GP with Contraction

Interpretable Tensor Contraction with Total-Variation Regularization

• Typically, we want to extract features from imaging data from spatially-contiguous
regions.

• In tensor contraction, recall:

Z(c)(s, t) = A(s, :)X (c) [B(t, :)]⊤ =
〈
Wst,X (c)

〉
• To make Wst sparse and smooth, we introduce the anisotropic total-variation (TV)

penalty [4] over Wst:

∥Wst∥TV = ∥∇xWst∥1 + ∥∇yWst∥1 (4)

where ∇x,∇y are gradient operators along the row and column direction.

• Fortunately, the TV penalty has an elegant form under our tensor setup:∑
s,t

∥Wst∥TV = ∥A∥1 · ∥∇xB∥1 + ∥∇xA∥1 · ∥B∥1 (5)
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Complete Model

Complete Framework-Model

• Coupling tensor contraction with tensor GP, we end up with our Tensor-GP with
Spatial Transformation (Tensor-GPST) model:

y = g ◦ h(X ) + ϵ

f(.) = g ◦ h(.) ∼ GP
(
0, K̃(., .)

)
K̃(X1,X2) = vec (X1)

⊤
[
Ũ⊤Ũ

]
vec (X2)

where Ũ = (U3 ⊗U2 ⊗U1) (IC ⊗B⊗A), g is the latent tensor GP, h is the tensor
contraction.
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Complete Model

Complete Framework-Estimation

• We estimate the kernel hyperparameters via penalized maximum marginal likelihood
(Empirical Bayes):

min
(θ,η,σ)

L (θ,η, σ) = −ℓ (y|θ,η, σ) + λ
∑
s,t

∥Wst∥TV (6)

where θ = {U1,U2,U3}, η = {A,B}.

• More specifically:

L (θ,η, σ) =
1

2
ln

∣∣∣∣Kθ,η + σ2In

∣∣∣∣+ 1

2
y⊤ (

Kθ,η + σ2In
)−1

y

+ λ (∥A∥1 · ∥∇xB∥1 + ∥∇xA∥1 · ∥B∥1)

where Kθ,η is the n× n empirical gram matrix.
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Algorithm

Algorithm: Block-Coordinate Proximal Gradient Descent

• We cyclically apply gradient-based updates on U1,U2,U3 and σ.

• As for A (similarly for B), we further break down to two steps:

1 Propose a gradient update Ã via gradient descent:

Ã← A− α · ∇Aℓ (y|θ,η, σ)︸ ︷︷ ︸
tractable thanks to the Woodbury identity

2 The proximal step becomes multiple parallel fused-lasso [5] problem. For the sth row of
A:

Â (s, :) = argmin
x

1

2α

∥∥∥x− Ã (s, :)
∥∥∥2 + (

λ∥∇xB̂∥1
)
· ∥x∥1 +

(
λ∥B̂∥1

)
· ∥∇xx∥1 (7)

note how the sparsity and smoothness of A is regularized by the smoothness and sparsity
of B.

• We update one parameter at a time following the order:
A→ B→ U1 → U2 → U3 → σ → A→ . . . until convergence.
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Â (s, :) = argmin
x

1

2α

∥∥∥x− Ã (s, :)
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Algorithm

Algorithm: Convergence Analysis

• Under some mild conditions, after (K + 1) iterations, we have the following bounds
on the loss function L (θ,η, σ) from its global minimum L (θ∗,η∗, σ∗):

4(K + 1)
(
L
(
θ̂
(K+1)

, η̂(K+1), σ̂(K+1)
)
− L (θ∗,η∗, σ∗)

)
≤ c−1δ(0) (initialization error)

+
K∑
k=0

hλ

(
∥η̂(K+1) − η∗∥1

)
(due to TV Penalty)

+ c−1
K∑
k=0

τ
(
∥θ̂

(K+1)
− θ∗∥2, ∥η̂(K+1) − η∗∥2

)
(due to coordinate descent)

• This result states that the algorithm converges to a local minimum at a rate of
O(1/K), and we confirmed this empirically.
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+
K∑
k=0

hλ

(
∥η̂(K+1) − η∗∥1

)
(due to TV Penalty)

+ c−1
K∑
k=0

τ
(
∥θ̂

(K+1)
− θ∗∥2, ∥η̂(K+1) − η∗∥2

)
(due to coordinate descent)

• This result states that the algorithm converges to a local minimum at a rate of
O(1/K), and we confirmed this empirically.
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Real Data Application: Solar Flare Forecasting

Application to Solar Flare Intensity Forecasting

• Model:
yi = g ◦ h (Xi) + ϵ (8)

• yi: solar flare intensity
• Xi: (H,W,C) = (50, 50, 10) AIA-HMI imaging dataset
• n = 1, 329 samples of M/X-class (nM/X = 479) and B-class (nB = 850).
• set the contracted tensor size as 3× 3× 10.
• chronologically splits the data into train/test.

• g: the Tensor Gaussian Process on the 3× 3× 10 latent tensors.

• h: the Tensor Contraction layer for dimensionality reduction.
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Real Data Application: Solar Flare Forecasting

Channel Average Tensor: B-class Solar Flare

Figure: Channel-wise Average for all B-class flares, each image is of size 50× 50.
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Real Data Application: Solar Flare Forecasting

Channel Average Tensor: M-class Solar Flare

Figure: Channel-wise Average for all M/X-class flares, each image is of size 50× 50.
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Real Data Application: Solar Flare Forecasting

Fitted Parameter for ĥ (Tensor Contraction)

Figure: Pixels with non-zero tensor contraction weights. Plotted with M-class channel average.
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Real Data Application: Solar Flare Forecasting

Fitted Parameter for ĥ (Tensor Contraction)

Figure: Pixels with tensor contraction weights > 5× 10−3. Plotted with M-class channel average.
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Real Data Application: Solar Flare Forecasting

Fitted Parameter for ĥ (Tensor Contraction)
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Real Data Application: Solar Flare Forecasting

Variance Decomposition for ĝ (GP)

• Recall that the multi-linear kernel of g(.) ∼ GP (0,K(., .)) is:

K(ĥ(X1), ĥ(X2)) = vec
(
ĥ(X1)

)⊤
[K3 ⊗K2 ⊗K1] vec

(
ĥ(X2)

)
(9)

• Equivalently:

Cov(y1, y2) =

h,w,C∑
(s1,t1,c1)
(s2,t2,c2)

K1(s1, s2) ·K2(t1, t2)︸ ︷︷ ︸
Feature Map Importance

×
Channel Importance︷ ︸︸ ︷

K3(c1, c2)×
〈
Ws1,t1 ,X

(c1)
1

〉
·
〈
Ws2,t2 ,X

(c2)
2

〉
︸ ︷︷ ︸

Latent Features Similarity

+ δ12 · σ2︸︷︷︸
Noise
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Real Data Application: Solar Flare Forecasting

Fitted Parameter for ĝ (GP)

Figure: Estimates for K1,K2,K3 of the latent tensor GP ĝ.
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Real Data Application: Solar Flare Forecasting

Fitted Parameter for ĝ (GP)

Figure: Channel (left) and feature map (right) % of explained variation of the latent tensor GP ĝ.
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Real Data Application: Solar Flare Forecasting

Tensor Regression Result: Chronological Split

Model MSE R2 Pcover TSS σ̂

Tensor-GP
0.405 0.374 0.969 0.511

0.662
0.978 0.184 0.920 0.309

Tensor-GPST (λ = 0.1)
0.392 0.394 0.968 0.518

0.634
0.772 0.220 0.900 0.366

Tensor-GPST (λ = 0.5)
0.429 0.337 0.970 0.448

0.661
0.611 0.269 0.957 0.432

Tensor-GPST (λ = 1)
0.414 0.361 0.960 0.476

0.649
0.720 0.235 0.925 0.338

CP
0.452 0.303 − 0.438 −
0.648 0.310 0.400

Tucker
0.462 0.287 − 0.428 −
0.655 0.301 0.400

Table: Training (top) and testing (bottom) performances. Metrics: MSE: Mean-Squared Error; R2:
R-squared; Pcover: coverage probability; TSS: True Skill Statistics.
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Real Data Application: Solar Flare Forecasting

Future Research Topics

• Identifiability issue between g(.) and h(.).

• Scalable GP regression with stochastic variational inference.

• Enable the model to handle binary responses.

• Account for image transformation (e.g. rotate, shift, shear) invariance in the tensor
kernel.
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Summary

Summary of the Talk

In this talk, we:

• propose a scalar-on-tensor Gaussian Process Regression (GPR) model:

y = g ◦ h(X ) + ϵ

where:

• h(.): condense the tensor data to a latent tensor via tensor contraction.
• g(.): use multi-linear kernel to do GPR in the latent tensor space.

• introduce an ℓ1 Total-Variation (TV) Penalty over h(.) for interpretable tensor
dimension reduction, and propose a coordinate proximal gradient descent method for
estimation.

• demonstrate the effectiveness via a solar flare intensity forecasting application.
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