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Background Research Question

Central Research Question

• Given a matrix time series {Xt}, how to forecast the matrix in the future given a
history of matrices? In other words, given the data Xt−p, Xt−p+1, . . . , Xt, how to give
a prediction for Xt+1, Xt+2, . . . ?

• If there is an additional vector time-series {zt} that are correlated with the matrix
time series, how can one incorporate the vector time-series information to assist the
forecast?
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Background Research Question

Central Research Question

Figure: How can we build a statistics model to make vector time-series to forecast matrix
time-series?
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Background Vector Auto-regressive Model (VAR)

Vector Auto-regressive Model (VAR)

• We start building new models from some classical, well-studied model. Here, we focus
on the Vector Auto-regressive (VAR) model.

• A typical VAR(p) model for a d-dimensional vector time-series {xt} can be
formulated as:

xt = Φ1xt−1 +Φ2xt−2 + · · ·+Φpxt−p + et (1)

where et is often assumed to be a white-noise process, uncorrelated with the xt.

• Φ1,Φ2, . . . ,Φp are d× d parameters to be estimated.

• The degree of freedom of the model is p× d2
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Background Matrix Auto-regressive Model (MAR)

Matrix Auto-regressive Model (MAR), but with VAR

• Now consider we have a matrix time-series {Xt} of size T ×m× n.

• If one “vectorize” matrices into long vectors, say for any matrix Xt of size m× n, the
vectorized matrix (column-major order) vec (Xt) is of shape mn× 1. Then one can
still apply the VAR model as follows:

vec (Xt) = Φ1vec (Xt−1) +Φ2vec (Xt−2) + · · ·+Φpvec (Xt−p) + vec (Et)

where Et ∈ Rm×n is assumed as a white-noise matrix time-series with i.i.d entries.

• Each coefficient matrix Φi, i = 1, 2, . . . , p is of size (mn)× (mn), which can be
astronomical for large matrices.
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Background Matrix Auto-regressive Model (MAR)

Challenges for MAR

There are two major challenges for estimating the matrix auto-regressive model using the
vector auto-regressive model:

• Over-parameterization of the coefficient matrices Φi. (size = mn×mn)

• Over-parameterization of the covariance matrix of vec (Et). (size = mn×mn)
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Background Matrix Auto-regressive Model (MAR)

Matrix Auto-regressive Model (Chen et al., 2021)

In R. Chen, Xiao, and Yang (2021), a lag-1 MAR model is proposed to reduce the
dimensionality of the parameter space:

Xt = AXt−1B
′
+Et

where A,B are model coefficients. For any matrix Xt of size m× n, the coefficients A is
of size m×m and B is of size n× n.

• Note how the total amount of parameters gets reduced from m2n2 to m2 + n2.
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Background Matrix Auto-regressive Model (MAR)

Matrix Auto-regressive Model (Chen et al., 2021)

An equivalent way of formulating the model under vectorization:

vec (Xt) = [B⊗A]vec (Xt−1) + vec (Et)

where ⊗ is the Kronecker product of two matrices.
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Background Matrix Auto-regressive Model (MAR)

A Quick Recap of Kronecker Product

The Kronecker Product of two matrices Am×n,Bp×q, i.e. A⊗B, is defined as:

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . . . . . . . .

am1B am2B . . . amnB


mp×nq
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Background Matrix Auto-regressive Model (MAR)

Matrix Auto-regressive Model (Chen et al., 2021)

Additionally, the covariance structure of the error process is assumed to have a similar
Kronecker product form:

cov (vec (Et)) = Σc ⊗ Σr
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Background Matrix Auto-regressive Model (MAR)

Matrix Auto-regressive Model (Chen et al., 2021)

Think about the interpretation of the model by think of: how does Xt−1 help predict Xt,ij

(the (i,j)-th element of Xt)?

• (VAR Model) Xt,ij =
∑

k,l Φij,klXt−1,kl, where Φij,kl are different for all (k, l) tuple.

• (MAR Model) Xt,ij =
∑

k,l (AikBjl)Xt−1,kl

• In MAR, the (i,k)-th element A captures how the k-th row of Xt−1 predicts the i-th
row of Xt.

• Similarly, the (j,l)-th element B captures how the j-th column of Xt−1 predicts the
l-th column of Xt.

• Finally, the prediction effect of Xt−1,kl is decomposed into the product of the row
effect (A) and column effect (B).
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Background Matrix Auto-regressive Model (MAR)

More Relevant Works

• In Hsu, Huang, and Tsay (2021), the authors consider further decomposing the
covariance structure of vec (Et) with a fixed-rank kriging model:

cov(vec (Et)) = FMF
′
+ σ2

ηI

where F is a rank-k basis, and M is a k × k “core” covariance matrix.

• In Wang, Liu, and R. Chen (2019), a matrix auto-regressive model for large-scale
matrices is proposed with the model applied to a “core” factor matrix time-series.

• In X. Chen and Sun (2021), the authors consider forecasting a tensor time-series with
vector time-series, but vector time-series are latent variables.
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Model Framework

Baseline Model

Our model undertakes two tasks:

• Build an auto-regressive model for {Xt}, without incurring latent variable.

• Incorporate the vector time-series {zt} explicitly in the model.
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Model Framework

Baseline Model

Figure: Matrix Auto-regressive Model with Temporal Covariates: Graphical Illustration.
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Model Framework

Baseline Model

Our model can be formulated as:

Xt =

p∑
l=1

AlXt−lBl
′
+

K∑
k=1

(
z
′
t−1βk

)
· Fk +Et (2)

where:

• (Al, Bl)
p
l=1 are pairs of m×m,n× n auto-regressive coefficients.

• Fk, k = 1, 2, . . . ,K are m× n basis functions

• βk are auxiliary data regression coefficients.

• cov (vec (Et)) = Σc⊗Σr, the common Kronecker product covariance structure for the
error process.
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Model Framework

Baseline Model

One can still obtain a familiar vectorization form of the model as:

xt =

p∑
l=1

(Bl ⊗Al)xt−l + [f1, f2, . . . , fK ][β1, β2, . . . , βK ]
′
zt−1 + et (2)

where:

• xt: the vectorized matrix time-series (mn× 1)

• fk: the vectorized matrix basis function (mn× 1)

• et: the vectorized noise term (mn× 1)
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Model Framework

Matrix Basis Function

The matrix basis functions F1,F2, . . . ,FK are m× n matrices, i.e. the same size as the
matrix time-series. In this work, we select the basis from some parametric
families instead of estimating the basis using non-parametric approach.
Potential choices of the basis functions include:

• Wavelet basis

• Multi-resolution spline basis (Jing et al. 2018)

• (Our choice) Spherical Harmonics basis (Nortje et al. 2015)
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Model Framework

Matrix Basis Function

Figure: Spherical Harmonics Basis, source: (Nortje et al. 2015)
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Model Framework

Matrix Basis Function

To evaluate the value of the basis function at every (i, j)-th cell, one first needs to define a
spatial grid over the matrix time-series. This grid contains the location information of
each cell of the matrix time-series, examples of such grid include:

• Longitude-Latitude Coordinates

• Width-Height in Digital Images
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To evaluate the value of the basis function at every (i, j)-th cell, one first needs to define a
spatial grid over the matrix time-series. This grid contains the location information of
each cell of the matrix time-series, examples of such grid include:

• Longitude-Latitude Coordinates

• Width-Height in Digital Images

The basis function thus contains an extra layer of information, i.e. the location
information of all data points, to help the vector covariates predict the future matrix
time-series.
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Model Estimation MLE with Block Coordinate Descent

Model Estimation with Maximum Likelihood Estimator (MLE)

In our model:

Xt =

p∑
l=1

AlXt−lBl
′
+

K∑
k=1

(
z
′
t−1βk

)
· Fk +Et

vec (Et) ∼ N (0,Σc ⊗ Σr)

we need to estimate all parameters in red.
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Model Estimation MLE with Block Coordinate Descent

Model Estimation with Maximum Likelihood Estimator (MLE)

A natural choice is to estimate with the Maximum Likelihood Estimator (MLE):

max
A1,A2,...,Ap,B1,B2,...,Bp;

β1,β2,...,βK ;
Σr,Σc

−T − p

2
(log |Σc|m|Σr|n)−

1

2

T∑
t=p+1

r
′
t (Σc ⊗ Σr)

−1 rt

 (3)

where rt is simply the residual:

rt = xt −
p∑

l=1

(Bl ⊗Al)xt−l − [f1, f2, . . . , fK ][β1, β2, . . . , βK ]
′
zt−1

Denote the negative log-likelihood function above as L(A1:p, B1:p, β1:K ,Σr,Σc).
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Model Estimation MLE with Block Coordinate Descent

Model Estimation with Maximum Likelihood Estimator (MLE)

• L(A1:p, B1:p, β1:K ,Σr,Σc) is convex for β1:K ,Σr,Σc, but is only bi-convex for pairs of
(Al, Bl), l = 1, 2, . . . , p.

• Bi-convexity means that L(Al, Bl, . . . ) is convex for Al, conditioning on Bl being
fixed, and vice versa.
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Model Estimation MLE with Block Coordinate Descent

Model Estimation with Maximum Likelihood Estimator (MLE)

In addition to the bi-convexity of the log-likelihood function, we also have an
identifiability concern regarding pairs of (Al, Bl), l = 1, 2, . . . , p and (Σc,Σr):

• For every pair of Al, Bl, we can identify them only up to a scaling constant because:

Bl ⊗Al =

(
1

c
Bl

)
⊗ (cAl) , c ̸= 0

same issue for (Σc,Σr)

• To tackle this, we fix these pairs of parameters subject to the constraint that:

∥Al∥F = 1, sign (tr(Al)) = 1, ∀l
∥Σr∥F = 1, sign (tr(Σr)) = 1
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Model Estimation MLE with Block Coordinate Descent

Solve MLE with Block Coordinate Descent (BCD)

• A common choice of optimizing bi-convex functions is the block coordinate descent
(BCD) method, or known as the cyclic coordinate minimization (CCM), or the
alternating minimization (AM).

• Basically at iteration k + 1, when estimating Al:

A
(k+1)
l = argmaxL(A(k+1)

1 , B
(k+1)
1 , . . . , A

(k+1)
l−1 , B

(k+1)
l−1 , Al, B

(k)
l , . . . , )

• Similarly when estimating Bl:

B
(k+1)
l = argmaxL(A(k+1)

1 , B
(k+1)
1 , . . . , A

(k+1)
l−1 , B

(k+1)
l−1 , A

(k+1)
l , Bl, . . . , )

• We update all the parameters to be estimated cyclically in the order of:

A1 → B1 → A2 → B2 → · · · → Ap → Bp → (β1, β2, . . . , βK)→ Σc → Σr → . . .
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• Similarly when estimating Bl:

B
(k+1)
l = argmaxL(A(k+1)

1 , B
(k+1)
1 , . . . , A

(k+1)
l−1 , B

(k+1)
l−1 , A

(k+1)
l , Bl, . . . , )

• We update all the parameters to be estimated cyclically in the order of:

A1 → B1 → A2 → B2 → · · · → Ap → Bp → (β1, β2, . . . , βK)→ Σc → Σr → . . .
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Model Estimation MLE with Block Coordinate Descent

MLE with BCD: Algorithm Overview

Luckily, every step of our block coordinate descent algorithm has a closed-form solution,
allowing exact maximization at every step. For instance:

• To update Al:

A
(k+1)
l ←

 T∑
t=p+1

X̃t,−lΣc
−1BlX

′
t−l

 T∑
t=p+1

Xt−lBl
′
Σc

−1BlX
′
t−l

−1

(3)

one needs to replace the parameters in red with their current value at step k in the
algorithm.

• The X̃t,−l is the residual of Xt, excluding the lag-l prediction:

X̃t,−l = Xt −
∑
s<l

A(k+1)
s Xt−s

(
B(k+1)

s

)′

−
∑
s>l

A(k)
s Xt−s

(
B(k)

s

)′

−
K∑
τ=1

(
z
′
t−1β

(k)
τ

)
· Fk
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Model Estimation MLE with Block Coordinate Descent

MLE with BCD: Algorithm Overview

• To update β = (β1, β2, . . . , βK) jointly, we have:

vec
(
β

′
)
←

 T∑
t=p+1

(
z
′
t−1 ⊗ F

)′ (
Σ(k)
c ⊗ Σ(k)

r

)−1 (
z
′
t−1 ⊗ F

)−1

·

 T∑
t=p+1

(
z
′
t−1 ⊗ F

)′ (
Σ(k)
c ⊗ Σ(k)

r

)−1
x̃t


which is similar to the formula used for generalized least square (GLS).

• x̃t is the residual at t, excluding the vector prediction:

x̃t = vec

(
Xt −

p∑
l=1

A
(k+1)
l Xt−l

(
B

(k+1)
l

)′
)
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Model Estimation MLE with Block Coordinate Descent

MLE with BCD: Algorithm Overview

To update Σc,Σr, one has:

Σc ←

∑T
t=p+1R

′
t

(
Σ
(k)
r

)−1
Rt

m(T − p)

Σr ←

∑T
t=p+1Rt

(
Σ
(k+1)
c

)−1
R

′
t

n(T − p)

where Rt is the residual at t, i.e. Xt subtracting all predictions, using all the updated
value of A1:p, B1:p, β1:K
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Model Estimation MLE with Block Coordinate Descent

MLE with BCD: Algorithm Overview

Figure: Algorithm Overview
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Model Estimation Penalized MLE: An Ad-hoc Procedure

The Feature Selection Problem

Given the computational algorithm, the performance of our model also relies on the
selection of the following hyperparameters:

• p: the maximum lag of the auto-regressive term, i.e. the maximum number of Xl

used as the predictor (AIC, BIC)

• q: the maximum lag of the vector predictor zt−1. We use zt−1 in our previous
discussion, but actually one can use multi-lag predictors: zt−1, zt−2, . . . , zt−q

• K: the amount of basis functions to use
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Model Estimation Penalized MLE: An Ad-hoc Procedure

The Feature Selection Problem

Given the computational algorithm, the performance of our model also relies on the
selection of the following hyperparameters:

• p: the maximum lag of the auto-regressive term, i.e. the maximum number of Xl

used as the predictor (AIC, BIC)

• q: the maximum lag of the vector predictor zt−1. We use zt−1 in our previous
discussion, but actually one can use multi-lag predictors: zt−1, zt−2, . . . , zt−q

• K: the amount of basis functions to use

The selection of p has been discussed in many relevant works, and here we discuss how to
select q and K using an ad-hoc procedure called Sparse Group Lasso (Simon et al. 2013).
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Model Estimation Penalized MLE: An Ad-hoc Procedure

The Feature/Basis Selection Problem

Figure: Our baseline model has no sparsity.
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Model Estimation Penalized MLE: An Ad-hoc Procedure

The Feature/Basis Selection Problem

Figure: We need to ensure both basis sparsity and feature sparsity.
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Model Estimation Penalized MLE: An Ad-hoc Procedure

Selection with Sparse Group Lasso

• Our original updating rule for β1, β2, . . . , βK is:

vec
(
β

′
)
←

 T∑
t=p+1

(
z
′
t−1 ⊗ F

)′ (
Σ(k)
c ⊗ Σ(k)

r

)−1 (
z
′
t−1 ⊗ F

)−1

·

 T∑
t=p+1

(
z
′
t−1 ⊗ F

)′ (
Σ(k)
c ⊗ Σ(k)

r

)−1
x̃t



• Now:

min
β1,β2,...,βK

1

2(T − p)

T∑
t=p+1

x̃
′
t

(
Σ̂c ⊗ Σ̂r

)−1
x̃t + (1− α)λ

K∑
k=1

∥βk∥2 + αλ
K∑
k=1

∥βk∥1
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β1,β2,...,βK

1

2(T − p)

T∑
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′
t

(
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k=1
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k=1

∥βk∥1
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Model Estimation Penalized MLE: An Ad-hoc Procedure

Selection with Sparse Group Lasso

We can fit the sparse group lasso with accelerated gradient descent. We can end up with a
series of estimates of β1, β2, . . . , βK , such that:

• Some βk = 0, which means the basis has null effect.

• Some βk contains 0 coefficient, meaning the basis is not null, but some features at
some lag have null effect.
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Model Estimation Penalized MLE: An Ad-hoc Procedure

Selection with Sparse Group Lasso

Figure: Ad-hoc sparse group lasso for feature selection.
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Theoretical Guarantees

Algorithm Convergence Guarantee

Theorem (Algorithm Convergence)

The block coordinate descent (BCD) algorithm guarantees that, from iteration k to k + 1,
the loss function descent, denoted as:

∆k = L(ϕ(k+1))− L(ϕ(k)), ϕ = (A1:p, B1:p,β,Σc,Σr)

has a lower bound:

∆k ≥
p∑

l=1

λmin

 T∑
t=p+1

Xt−l(B
(k)
l )

′
B

(k)
l X

′
t−l

 ∥A(k)
l −A

(k+1)
l ∥2

p∑
l=1

λmin

 T∑
t=p+1

X
′
t−l(A

(k+1)
l )

′
A

(k+1)
l Xt−l

 ∥B(k)
l −B

(k+1)
l ∥2

λmin

 T∑
t=p+1

zt−1z
′
t−1

 · λmin

(
K∑
τ=1

fτ f
′
τ

)
∥β(k) − β(k+1)∥2
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Theoretical Guarantees

Large Sample Asymptotics of the Estimators

Theorem (Large Sample Asymptotics)

Assume that the BCD algorithm reaches the global minimum of the empirical loss function
L̂(ϕ), and denote the global minimum reached as ϕ̂∗, then with probability 1, we have:

√
T∥ϕ̂∗ − ϕ0∥ ≤ cT

where T is the total number of frames of the matrix time-series, {cT } → +∞ is an
arbitrary sequence and ϕ0 is the ground truth parameter of the data generating model.
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Numerical Experiment

Numerical Experiments Design

To validate our proposed model and algorithm, we design two numerical experiments with
simulated data:

• Non-sparse β1, β2, . . . , βK . (Non-sparse scenario)

• Sparse β1, β2, . . . , βK . (Sparse scenario)
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Numerical Experiment Scenario I: Non-sparse

Scenario I: Non-sparse

We generate our simulated data with the specification of:

• 5000 frames of 3-dimensional vector time-series {zt}, generated via a stationary
VAR(1) process.

• K = 1, a single basis function chosen from the Spherical Harmonics family.

• Spatial grid is defined using (5i, 5j), i, j = 1, 2, . . . , 10.

• 5000 frames of 10× 10 matrix time-series {Xt}, generated via our model.

• We specify the true model with p = q = 3, namely the correct time lag of both the
auto-regressive term and the vector covariates term are 3.
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Numerical Experiment Scenario I: Non-sparse

Scenario I: Non-sparse

To generate the model parameters A1:3, B1:3, β1,Σr,Σc:

• Al, l = 1, 2, 3 having a banded structure:

Al(i, j) =

{
0.5|i−j|, if |i− j| ≤ 5

0, if |i− j| > 5

and we generate Bl, l = 1, 2, 3 randomly from standard normal.

• The covariance structures are generated based on:

Σs,ij = exp

{
−|i− j|

5

}
, s ∈ {c, r}

note that this means the variance of every matrix cell is 1.

• β1 ∼ N (0, I)

• We re-scale the (Al, Bl), l = 1, 2, 3 and Σr,Σc to have ∥Al∥F = 1, sign(tr(Al)) = 1 for
l = 1, 2, 3, and ∥Σr∥F = 1.
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Numerical Experiment Scenario I: Non-sparse

Scenario I: Non-sparse

We evaluate our model based on two major statistics:

• (Estimation Accuracy): The element-wise the root-mean-square error (RMSE) of all
model parameters estimators: Âl, B̂l, β̂, Σ̂r, Σ̂c, after the model converges.

• (Prediction Accuracy):

RMSEpred =

√√√√ 1

(T − p)mn

T∑
t=p+1

∥X̂t −Xt∥2

where X̂t is the one-step prediction of Xt.
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Numerical Experiment Scenario I: Non-sparse

Scenario I: Non-sparse (Results)

Figure: Model fitting results for p ∈ {1, 2, 3, 4, 5}, and q ∈ {0, 1, 2, 3}. Results are the average of 20
repeated model runs. The ground truth is p = q = 3. Round dot highlights the
“correctly-specified” model.
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Numerical Experiment Scenario I: Non-sparse

Scenario I: Non-sparse (Results)

Figure: Model fitting results for T = 200, 500, 1000, 2000, 5000. An under-specified (red, p = 2)
model, a correct (green, p = 3) model and an over-specified (blue, p = 4) are shown respectively.
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Numerical Experiment Scenario I: Non-sparse

Scenario I: Non-sparse (Results)

Figure: The ground truth of A1, B1,Σc (top row) and the estimated A1, B1,Σc (bottom row) for
model p = q = 3, T = 5, 000.
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Numerical Experiment Scenario II: Sparse

Scenario II: Sparse

Similar to the data generating scheme as the non-sparse case, we generate a simulated
dataset with:

• 8000 frames of 3-dimensional vector time-series {zt}, generated via a stationary
VAR(1) process.

• 8000 frames of 20× 20 matrix time-series {Xt}, generated via our model.

• Spatial grid is defined using (5i, 5j), i, j = 1, 2, . . . , 10.

• We specify the true model with p = q = 1, namely the correct time lag of both the
auto-regressive term and the vector covariates term are 1.
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Numerical Experiment Scenario II: Sparse

Scenario II: Sparse

• (Basis sparsity) K = 30, and 15 out of the 30 basis functions have null effect on the
auto-regressive process, i.e. their βk = 0. Denote the collection of these basis
functions as K0.

• (Feature sparsity) For the remaining 15 basis functions, we coerce 40% of the
elements of their corresponding βk to be zero. Denote the collection of these basis
functions as K1.
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Numerical Experiment Scenario II: Sparse

Scenario II: Sparse

We run our algorithm on the new simulated data and evaluate the following metrics:

• ∑
k∈K0∪K1

I(|β̂k|1 = 0): total group sparsity.

• ∑
k∈K0

I(|β̂k|1 = 0): total group sparsity for the truly sparse basis functions.

• ∑
k∈K1

∑
d

I(| ˆβk,d|1 = 0): total feature sparsity, restricted to the non-sparse basis

functions.

• ∑
k∈K1

∑
d

I(| ˆβk,d|1 = 0 ∧ |βk,d|1 = 0): total feature sparsity out of all truly sparse

features, restricted to the non-sparse basis functions.
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Numerical Experiment Scenario II: Sparse

Scenario II: Sparse (Results)

Figure: Group and Individual Sparsity Along the Solution Path: Large Sample Case (T = 8000).
The ground truth group sparsity is 15, and the ground truth feature sparsity is 24. α = 0.95
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Real Data Application: Forecasting The Total Electron Content Map

Real Data: The Total Electron Content Map

Figure: The Total Electron Content Map: Example at 23:57:30, Mar 17, 2015.
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Real Data Application: Forecasting The Total Electron Content Map

Real Data: The Total Electron Content Map

• There are 2, 000+ matrices from Jun 2017 ∼ Sept 2017, with individual matrix
having size 181× 361.

• We split the data into a train set (Jun 2017 ∼ Aug 2017) and a test set (Sept 2017).

• We apply our model with p = q = 1 and use all spherical harmonics basis at or below
order 5 as our basis functions.

• The test set 1-hour prediction RMSE is 1.88 TECu, while the persistence model
(simply predict t+ 1 with t) has RMSE at 2.56 TECu.
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Real Data Application: Forecasting The Total Electron Content Map

Real Data: The Total Electron Content Map

Figure: TEC Map 15-min, 1-hour, 3-hour forecasting results at 18:02:30, Sep 8, 2017.
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Real Data Application: Forecasting The Total Electron Content Map

Concluding Remarks

In this research project, we:

• Build a novel time-series auto-regressive model with matrix covariates and auxiliary
vector covariates.

• Propose an optimization algorithm for model estimation, together with theoretical
guarantees.

• Apply the model on simulated and real data, ended up with decent prediction
performance and interpretability.
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Real Data Application: Forecasting The Total Electron Content Map

Concluding Remarks

What remains to be done/extended include:

• Find scalable implementation of the algorithm to large-scale data problem.

• Estimate the basis function using non-parametric, instead of parametric approach.

• Derive the joint asmptotics of the model parameters.
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Real Data Application: Forecasting The Total Electron Content Map
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