Matrix Auto-regressive Model with Vector Time-series Covariates

Hu Sun

January 29, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

1 Background

Research Question Vector Auto-regressive Model (VAR) Matrix Auto-regressive Model (MAR)

2 Model Framework

3 Model Estimation MLE with Block Coordinate Descent Penalized MLE: An Ad-hoc Procedure

4 Theoretical Guarantees

6 Numerical Experiment Scenario I: Non-sparse

Scenario II: Sparse

6 Real Data Application: Forecasting The Total Electron Content Map

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 2/33

1 Background

Research Question Vector Auto-regressive Model (VAR) Matrix Auto-regressive Model (MAR)

2 Model Framework

3 Model Estimation

4 Theoretical Guarantees

5 Numerical Experiment

6 Real Data Application: Forecasting The Total Electron Content Map

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 3/33

Central Research Question

• Given a matrix time series $\{\mathbf{X}_t\}$, how to forecast the matrix in the future given a history of matrices? In other words, given the data $X_{t-p}, X_{t-p+1}, \ldots, X_t$, how to give a prediction for X_{t+1}, X_{t+2}, \ldots ?

- 12

Central Research Question

- Given a matrix time series $\{\mathbf{X}_t\}$, how to forecast the matrix in the future given a history of matrices? In other words, given the data $X_{t-p}, X_{t-p+1}, \ldots, X_t$, how to give a prediction for X_{t+1}, X_{t+2}, \ldots ?
- If there is an additional vector time-series $\{\mathbf{z}_t\}$ that are correlated with the matrix time series, how can one incorporate the vector time-series information to assist the forecast?

・ロト ・回ト ・ヨト ・ヨト

Central Research Question

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 4/33

ъ

• We start building new models from some classical, well-studied model. Here, we focus on the Vector Auto-regressive (VAR) model.

3

- We start building new models from some classical, well-studied model. Here, we focus on the Vector Auto-regressive (VAR) model.
- A typical VAR(p) model for a d-dimensional vector time-series $\{x_t\}$ can be formulated as:

$$\mathbf{x}_t = \mathbf{\Phi}_1 \mathbf{x}_{t-1} + \mathbf{\Phi}_2 \mathbf{x}_{t-2} + \dots + \mathbf{\Phi}_p \mathbf{x}_{t-p} + \mathbf{e}_t \tag{1}$$

where \mathbf{e}_t is often assumed to be a white-noise process, uncorrelated with the x_t .

- We start building new models from some classical, well-studied model. Here, we focus on the Vector Auto-regressive (VAR) model.
- A typical VAR(p) model for a d-dimensional vector time-series $\{x_t\}$ can be formulated as:

$$\mathbf{x}_t = \mathbf{\Phi}_1 \mathbf{x}_{t-1} + \mathbf{\Phi}_2 \mathbf{x}_{t-2} + \dots + \mathbf{\Phi}_p \mathbf{x}_{t-p} + \mathbf{e}_t \tag{1}$$

where \mathbf{e}_t is often assumed to be a white-noise process, uncorrelated with the x_t .

• $\Phi_1, \Phi_2, \ldots, \Phi_p$ are $d \times d$ parameters to be estimated.

- We start building new models from some classical, well-studied model. Here, we focus on the Vector Auto-regressive (VAR) model.
- A typical VAR(p) model for a d-dimensional vector time-series $\{x_t\}$ can be formulated as:

$$\mathbf{x}_t = \mathbf{\Phi}_1 \mathbf{x}_{t-1} + \mathbf{\Phi}_2 \mathbf{x}_{t-2} + \dots + \mathbf{\Phi}_p \mathbf{x}_{t-p} + \mathbf{e}_t \tag{1}$$

where \mathbf{e}_t is often assumed to be a white-noise process, uncorrelated with the x_t .

- $\Phi_1, \Phi_2, \ldots, \Phi_p$ are $d \times d$ parameters to be estimated.
- The degree of freedom of the model is $p \times d^2$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 5/33

Matrix Auto-regressive Model (MAR), but with VAR

• Now consider we have a matrix time-series $\{\mathbf{X}_t\}$ of size $T \times m \times n$.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 6/33

3

Matrix Auto-regressive Model (MAR), but with VAR

- Now consider we have a matrix time-series $\{\mathbf{X}_t\}$ of size $T \times m \times n$.
- If one "vectorize" matrices into long vectors, say for any matrix \mathbf{X}_t of size $m \times n$, the vectorized matrix (column-major order) vec (\mathbf{X}_t) is of shape $mn \times 1$. Then one can still apply the VAR model as follows:

$$\operatorname{vec}\left(\mathbf{X}_{t}\right) = \mathbf{\Phi}_{1}\operatorname{vec}\left(\mathbf{X}_{t-1}\right) + \mathbf{\Phi}_{2}\operatorname{vec}\left(\mathbf{X}_{t-2}\right) + \dots + \mathbf{\Phi}_{p}\operatorname{vec}\left(\mathbf{X}_{t-p}\right) + \operatorname{vec}\left(\mathbf{E}_{t}\right)$$

where $\mathbf{E}_t \in \mathbb{R}^{m \times n}$ is assumed as a white-noise matrix time-series with i.i.d entries.

Matrix Auto-regressive Model (MAR), but with VAR

- Now consider we have a matrix time-series $\{\mathbf{X}_t\}$ of size $T \times m \times n$.
- If one "vectorize" matrices into long vectors, say for any matrix \mathbf{X}_t of size $m \times n$, the vectorized matrix (column-major order) vec (\mathbf{X}_t) is of shape $mn \times 1$. Then one can still apply the VAR model as follows:

$$\operatorname{vec}\left(\mathbf{X}_{t}\right) = \mathbf{\Phi}_{1}\operatorname{vec}\left(\mathbf{X}_{t-1}\right) + \mathbf{\Phi}_{2}\operatorname{vec}\left(\mathbf{X}_{t-2}\right) + \dots + \mathbf{\Phi}_{p}\operatorname{vec}\left(\mathbf{X}_{t-p}\right) + \operatorname{vec}\left(\mathbf{E}_{t}\right)$$

where $\mathbf{E}_t \in \mathbb{R}^{m \times n}$ is assumed as a white-noise matrix time-series with i.i.d entries.

• Each coefficient matrix Φ_i , i = 1, 2, ..., p is of size $(mn) \times (mn)$, which can be astronomical for large matrices.

There are two major challenges for estimating the matrix auto-regressive model using the vector auto-regressive model:

- Over-parameterization of the coefficient matrices Φ_i . (size = $mn \times mn$)
- Over-parameterization of the covariance matrix of vec (\mathbf{E}_t) . (size $= mn \times mn$)

ヘロト ヘヨト ヘヨト ヘヨト

In R. Chen, Xiao, and Yang (2021), a lag-1 MAR model is proposed to reduce the dimensionality of the parameter space:

$$\mathbf{X}_{t} = \mathbf{A}\mathbf{X}_{t-1}\mathbf{B}' + \mathbf{E}_{t}$$

where \mathbf{A}, \mathbf{B} are model coefficients. For any matrix \mathbf{X}_t of size $m \times n$, the coefficients \mathbf{A} is of size $m \times m$ and \mathbf{B} is of size $n \times n$.

• Note how the total amount of parameters gets reduced from m^2n^2 to $m^2 + n^2$.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

An equivalent way of formulating the model under vectorization:

$$\operatorname{vec}\left(\mathbf{X}_{t}\right) = [\mathbf{B} \otimes \mathbf{A}]\operatorname{vec}\left(\mathbf{X}_{t-1}\right) + \operatorname{vec}\left(\mathbf{E}_{t}\right)$$

where \otimes is the Kronecker product of two matrices.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 8/33

A Quick Recap of Kronecker Product

The Kronecker Product of two matrices $\mathbf{A}_{m \times n}, \mathbf{B}_{p \times q}$, i.e. $\mathbf{A} \otimes \mathbf{B}$, is defined as:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2n}\mathbf{B} \\ \dots & \dots & \dots & \dots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{bmatrix}_{mp \times nq}$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 9/33

- 32

・ロト ・四ト ・ヨト ・ヨト

Additionally, the covariance structure of the error process is assumed to have a similar Kronecker product form:

$$\mathbf{cov}\left(\operatorname{vec}\left(\mathbf{E}_{\mathbf{t}}\right)\right) = \Sigma_{c} \otimes \Sigma_{r}$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 10/33

Think about the interpretation of the model by think of: how does \mathbf{X}_{t-1} help predict $\mathbf{X}_{t,ij}$ (the (i,j)-th element of \mathbf{X}_t)?

- (VAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \mathbf{\Phi}_{ij,kl} \mathbf{X}_{t-1,kl}$, where $\mathbf{\Phi}_{ij,kl}$ are different for all (k,l) tuple.
- (MAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \left(\mathbf{A}_{ik} \mathbf{B}_{jl} \right) \mathbf{X}_{t-1,kl}$

- 34

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Think about the interpretation of the model by think of: how does \mathbf{X}_{t-1} help predict $\mathbf{X}_{t,ij}$ (the (i,j)-th element of \mathbf{X}_t)?

- (VAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \mathbf{\Phi}_{ij,kl} \mathbf{X}_{t-1,kl}$, where $\mathbf{\Phi}_{ij,kl}$ are different for all (k,l) tuple.
- (MAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \left(\mathbf{A}_{ik} \mathbf{B}_{jl} \right) \mathbf{X}_{t-1,kl}$
- In MAR, the (i,k)-th element **A** captures how the k-th row of \mathbf{X}_{t-1} predicts the i-th row of \mathbf{X}_t .

- 34

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Think about the interpretation of the model by think of: how does \mathbf{X}_{t-1} help predict $\mathbf{X}_{t,ij}$ (the (i,j)-th element of \mathbf{X}_t)?

- (VAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \mathbf{\Phi}_{ij,kl} \mathbf{X}_{t-1,kl}$, where $\mathbf{\Phi}_{ij,kl}$ are different for all (k,l) tuple.
- (MAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \left(\mathbf{A}_{ik} \mathbf{B}_{jl} \right) \mathbf{X}_{t-1,kl}$
- In MAR, the (i,k)-th element **A** captures how the k-th row of \mathbf{X}_{t-1} predicts the i-th row of \mathbf{X}_t .
- Similarly, the (j,l)-th element **B** captures how the j-th column of \mathbf{X}_{t-1} predicts the l-th column of \mathbf{X}_t .

イロト 不同 トイヨト イヨト 一日

Think about the interpretation of the model by think of: how does \mathbf{X}_{t-1} help predict $\mathbf{X}_{t,ij}$ (the (i,j)-th element of \mathbf{X}_t)?

- (VAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \mathbf{\Phi}_{ij,kl} \mathbf{X}_{t-1,kl}$, where $\mathbf{\Phi}_{ij,kl}$ are different for all (k,l) tuple.
- (MAR Model) $\mathbf{X}_{t,ij} = \sum_{k,l} \left(\mathbf{A}_{ik} \mathbf{B}_{jl} \right) \mathbf{X}_{t-1,kl}$
- In MAR, the (i,k)-th element **A** captures how the k-th row of \mathbf{X}_{t-1} predicts the i-th row of \mathbf{X}_t .
- Similarly, the (j,l)-th element **B** captures how the j-th column of \mathbf{X}_{t-1} predicts the l-th column of \mathbf{X}_t .
- Finally, the prediction effect of $\mathbf{X}_{t-1,kl}$ is decomposed into the product of the row effect (A) and column effect (B).

(日) (四) (王) (王) (王)

• In Hsu, Huang, and Tsay (2021), the authors consider further decomposing the covariance structure of vec (\mathbf{E}_t) with a fixed-rank kriging model:

$$\mathbf{cov}(\operatorname{vec}\left(\mathbf{E_{t}}\right)) = \mathbf{FMF}' + \sigma_{\eta}^{2}\mathbf{I}$$

where **F** is a rank-k basis, and **M** is a $k \times k$ "core" covariance matrix.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 11/33

• In Hsu, Huang, and Tsay (2021), the authors consider further decomposing the covariance structure of vec (\mathbf{E}_t) with a fixed-rank kriging model:

$$\mathbf{cov}(\operatorname{vec}\left(\mathbf{E_{t}}\right))=\mathbf{FMF}'+\sigma_{\eta}^{2}\mathbf{I}$$

where **F** is a rank-k basis, and **M** is a $k \times k$ "core" covariance matrix.

• In Wang, Liu, and R. Chen (2019), a matrix auto-regressive model for large-scale matrices is proposed with the model applied to a "core" factor matrix time-series.

• In Hsu, Huang, and Tsay (2021), the authors consider further decomposing the covariance structure of vec (\mathbf{E}_t) with a fixed-rank kriging model:

$$\mathbf{cov}(\operatorname{vec}\left(\mathbf{E_{t}}\right)) = \mathbf{FMF}' + \sigma_{\eta}^{2}\mathbf{I}$$

where **F** is a rank-k basis, and **M** is a $k \times k$ "core" covariance matrix.

- In Wang, Liu, and R. Chen (2019), a matrix auto-regressive model for large-scale matrices is proposed with the model applied to a "core" factor matrix time-series.
- In X. Chen and Sun (2021), the authors consider forecasting a tensor time-series with vector time-series, but vector time-series are latent variables.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 11/33

Model Framework

Background

2 Model Framework

3 Model Estimation

4 Theoretical Guarantees

5 Numerical Experiment

6 Real Data Application: Forecasting The Total Electron Content Map

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 12/33

- 32

Our model undertakes two tasks:

- Build an auto-regressive model for $\{\mathbf{X}_t\}$, without incurring latent variable.
- Incorporate the vector time-series $\{\mathbf{z}_t\}$ explicitly in the model.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 13/33

<ロ> (四) (四) (三) (三) (三)

Baseline Model

Figure: Matrix Auto-regressive Model with Temporal Covariates: Graphical Illustration.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 13/33

Our model can be formulated as:

$$\mathbf{X}_{t} = \sum_{l=1}^{p} \boldsymbol{A}_{l} \mathbf{X}_{t-l} \boldsymbol{B}_{l}^{'} + \sum_{k=1}^{K} \left(\mathbf{z}_{t-1}^{'} \boldsymbol{\beta}_{k} \right) \cdot \mathbf{F}_{k} + \mathbf{E}_{t}$$
(2)

where:

- $(A_l, B_l)_{l=1}^p$ are pairs of $m \times m, n \times n$ auto-regressive coefficients.
- $\mathbf{F}_k, k = 1, 2, \dots, K$ are $m \times n$ basis functions
- β_k are auxiliary data regression coefficients.
- $\mathbf{cov} (\mathbf{vec} (\mathbf{E_t})) = \Sigma_c \otimes \Sigma_r$, the common Kronecker product covariance structure for the error process.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()・

One can still obtain a familiar vectorization form of the model as:

$$\mathbf{x}_{t} = \sum_{l=1}^{p} \left(\mathbf{B}_{l} \otimes \mathbf{A}_{l} \right) \mathbf{x}_{t-l} + \left[\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{K} \right] \left[\mathbf{\beta}_{1}, \mathbf{\beta}_{2}, \dots, \mathbf{\beta}_{K} \right]' \mathbf{z}_{t-1} + \mathbf{e}_{t}$$
(2)

where:

- \mathbf{x}_t : the vectorized matrix time-series $(mn \times 1)$
- \mathbf{f}_k : the vectorized matrix basis function $(mn \times 1)$
- \mathbf{e}_t : the vectorized noise term $(mn \times 1)$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 13/33

- 2

The matrix basis functions $\mathbf{F}_1, \mathbf{F}_2, \dots, \mathbf{F}_K$ are $m \times n$ matrices, i.e. the same size as the matrix time-series. In this work, we select the basis from some parametric families instead of estimating the basis using non-parametric approach. Potential choices of the basis functions include:

- Wavelet basis
- Multi-resolution spline basis (Jing et al. 2018)
- (Our choice) Spherical Harmonics basis (Nortje et al. 2015)

Model Framework

Matrix Basis Function

Figure: Spherical Harmonics Basis, source: (Nortje et al. 2015)

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 14/33

- 2

・ロト ・四ト ・ヨト ・ヨト

To evaluate the value of the basis function at every (i, j)-th cell, one first needs to define a *spatial grid* over the matrix time-series. This grid contains the **location information** of each cell of the matrix time-series, examples of such grid include:

- Longitude-Latitude Coordinates
- Width-Height in Digital Images

ヘロト ヘヨト ヘヨト ヘヨト

To evaluate the value of the basis function at every (i, j)-th cell, one first needs to define a *spatial grid* over the matrix time-series. This grid contains the **location information** of each cell of the matrix time-series, examples of such grid include:

- Longitude-Latitude Coordinates
- Width-Height in Digital Images

The basis function thus contains an extra layer of information, i.e. the location information of all data points, to help the vector covariates predict the future matrix time-series.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 14/33

- 31

Model Estimation

1 Background

2 Model Framework

3 Model Estimation MLE with Block Coordinate Descent Penalized MLE: An Ad-hoc Procedure

- 4 Theoretical Guarantees
- **5** Numerical Experiment

6 Real Data Application: Forecasting The Total Electron Content Map

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 15/33

- 34

・ロト ・回ト ・ヨト ・ヨト

Model Estimation with Maximum Likelihood Estimator (MLE)

In our model:

$$\mathbf{X}_{t} = \sum_{l=1}^{p} A_{l} \mathbf{X}_{t-l} B_{l}' + \sum_{k=1}^{K} \left(\mathbf{z}_{t-1}' \boldsymbol{\beta}_{k} \right) \cdot \mathbf{F}_{k} + \mathbf{E}_{t}$$
$$\operatorname{vec} \left(\mathbf{E}_{t} \right) \sim \mathcal{N} \left(\mathbf{0}, \boldsymbol{\Sigma}_{c} \otimes \boldsymbol{\Sigma}_{r} \right)$$

we need to estimate all parameters in red.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 16/33

- 22
Model Estimation with Maximum Likelihood Estimator (MLE)

A natural choice is to estimate with the Maximum Likelihood Estimator (MLE):

$$\max_{\substack{A_{1},A_{2},\dots,A_{p},B_{1},B_{2},\dots,B_{r};\\ \beta_{1},\beta_{2},\dots,\beta_{K};\\ \Sigma_{r},\Sigma_{c}}} \left\{ -\frac{T-p}{2} \left(\log |\Sigma_{c}|^{m} |\Sigma_{r}|^{n} \right) - \frac{1}{2} \sum_{t=p+1}^{T} \mathbf{r}_{t}^{'} \left(\Sigma_{c} \otimes \Sigma_{r} \right)^{-1} \mathbf{r}_{t} \right\}$$
(3)

where \mathbf{r}_t is simply the residual:

$$\mathbf{r}_{t} = \mathbf{x}_{t} - \sum_{l=1}^{p} \left(B_{l} \otimes A_{l} \right) \mathbf{x}_{t-l} - \left[\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{K} \right] \left[\beta_{1}, \beta_{2}, \dots, \beta_{K} \right]' \mathbf{z}_{t-1}$$

Denote the negative log-likelihood function above as $\mathcal{L}(A_{1:p}, B_{1:p}, \beta_{1:K}, \Sigma_r, \Sigma_c)$.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 16/33

Model Estimation with Maximum Likelihood Estimator (MLE)

- $\mathcal{L}(A_{1:p}, B_{1:p}, \beta_{1:K}, \Sigma_r, \Sigma_c)$ is convex for $\beta_{1:K}, \Sigma_r, \Sigma_c$, but is only *bi-convex* for pairs of $(A_l, B_l), l = 1, 2, ..., p$.
- Bi-convexity means that $\mathcal{L}(A_l, B_l, ...)$ is convex for A_l , conditioning on B_l being fixed, and vice versa.

・ロト ・回ト ・ヨト ・ヨト

Model Estimation with Maximum Likelihood Estimator (MLE)

In addition to the bi-convexity of the log-likelihood function, we also have an **identifiability concern** regarding pairs of $(A_l, B_l), l = 1, 2, ..., p$ and (Σ_c, Σ_r) :

• For every pair of A_l, B_l , we can identify them only up to a scaling constant because:

$$B_l \otimes A_l = \left(\frac{1}{c}B_l\right) \otimes (cA_l), c \neq 0$$

same issue for (Σ_c, Σ_r)

• To tackle this, we fix these pairs of parameters subject to the constraint that:

$$||A_l||_F = 1, \quad \text{sign}\left(tr(A_l)\right) = 1, \forall l$$

$$||\Sigma_r||_F = 1, \quad \text{sign}\left(tr(\Sigma_r)\right) = 1$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 16/33

• A common choice of optimizing bi-convex functions is the block coordinate descent (BCD) method, or known as the cyclic coordinate minimization (CCM), or the alternating minimization (AM).

- A common choice of optimizing bi-convex functions is the block coordinate descent (BCD) method, or known as the cyclic coordinate minimization (CCM), or the alternating minimization (AM).
- Basically at iteration k + 1, when estimating A_l :

$$A_{l}^{(k+1)} = \arg \max \mathcal{L}(A_{1}^{(k+1)}, B_{1}^{(k+1)}, \dots, A_{l-1}^{(k+1)}, B_{l-1}^{(k+1)}, \mathbf{A}_{l}, B_{l}^{(k)}, \dots,)$$

- A common choice of optimizing bi-convex functions is the block coordinate descent (BCD) method, or known as the cyclic coordinate minimization (CCM), or the alternating minimization (AM).
- Basically at iteration k + 1, when estimating A_l :

$$A_{l}^{(k+1)} = \arg \max \mathcal{L}(A_{1}^{(k+1)}, B_{1}^{(k+1)}, \dots, A_{l-1}^{(k+1)}, B_{l-1}^{(k+1)}, A_{l}, B_{l}^{(k)}, \dots,)$$

• Similarly when estimating B_l :

$$B_l^{(k+1)} = \arg \max \mathcal{L}(A_1^{(k+1)}, B_1^{(k+1)}, \dots, A_{l-1}^{(k+1)}, B_{l-1}^{(k+1)}, A_l^{(k+1)}, \underline{B_l}, \dots,)$$

・ロト ・回ト ・ヨト ・ヨト

- A common choice of optimizing bi-convex functions is the block coordinate descent (BCD) method, or known as the cyclic coordinate minimization (CCM), or the alternating minimization (AM).
- Basically at iteration k + 1, when estimating A_l :

$$A_{l}^{(k+1)} = \arg \max \mathcal{L}(A_{1}^{(k+1)}, B_{1}^{(k+1)}, \dots, A_{l-1}^{(k+1)}, B_{l-1}^{(k+1)}, A_{l}, B_{l}^{(k)}, \dots,)$$

• Similarly when estimating B_l :

$$B_l^{(k+1)} = \arg \max \mathcal{L}(A_1^{(k+1)}, B_1^{(k+1)}, \dots, A_{l-1}^{(k+1)}, B_{l-1}^{(k+1)}, A_l^{(k+1)}, B_l, \dots,)$$

• We update all the parameters to be estimated cyclically in the order of:

$$A_1 \to B_1 \to A_2 \to B_2 \to \dots \to A_p \to B_p \to (\beta_1, \beta_2, \dots, \beta_K) \to \Sigma_c \to \Sigma_r \to \dots$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 17/33

Luckily, every step of our block coordinate descent algorithm has a closed-form solution, allowing exact maximization at every step. For instance:

• To update A_l :

$$A_{l}^{(k+1)} \leftarrow \left(\sum_{t=p+1}^{T} \widetilde{\mathbf{X}}_{t,-l} \Sigma_{c}^{-1} B_{l} \mathbf{X}_{t-l}^{'}\right) \left(\sum_{t=p+1}^{T} \mathbf{X}_{t-l} B_{l}^{'} \Sigma_{c}^{-1} B_{l} \mathbf{X}_{t-l}^{'}\right)^{-1}$$
(3)

one needs to replace the parameters in red with their current value at step **k** in the algorithm.

• The $\widetilde{\mathbf{X}}_{t,-l}$ is the residual of \mathbf{X}_t , excluding the lag-l prediction:

$$\widetilde{\mathbf{X}}_{t,-l} = \mathbf{X}_{t} - \sum_{s < l} A_{s}^{(k+1)} \mathbf{X}_{t-s} \left(B_{s}^{(k+1)} \right)' - \sum_{s > l} A_{s}^{(k)} \mathbf{X}_{t-s} \left(B_{s}^{(k)} \right)' - \sum_{\tau=1}^{K} \left(\mathbf{z}_{t-1}^{'} \beta_{\tau}^{(k)} \right) \cdot \mathbf{F}_{k}$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 18/33

・ロト ・回ト ・ヨト ・ヨト

• To update $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_K)$ jointly, we have:

$$\operatorname{vec}\left(\boldsymbol{\beta}'\right) \leftarrow \left[\sum_{t=p+1}^{T} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)' \left(\Sigma_{c}^{(k)} \otimes \Sigma_{r}^{(k)}\right)^{-1} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)\right]^{-1} \\ \left[\sum_{t=p+1}^{T} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)' \left(\Sigma_{c}^{(k)} \otimes \Sigma_{r}^{(k)}\right)^{-1} \widetilde{\mathbf{x}}_{t}\right]$$

which is similar to the formula used for generalized least square (GLS).

• $\widetilde{\mathbf{x}}_t$ is the residual at t, excluding the vector prediction:

$$\widetilde{\mathbf{x}}_{t} = \operatorname{vec}\left(\mathbf{X}_{t} - \sum_{l=1}^{p} A_{l}^{(k+1)} \mathbf{X}_{t-l} \left(B_{l}^{(k+1)}\right)'\right)$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 18/33

- 31

To update Σ_c, Σ_r , one has:

$$\Sigma_c \leftarrow \frac{\sum_{t=p+1}^T \mathbf{R}_t' \left(\Sigma_r^{(k)}\right)^{-1} \mathbf{R}_t}{m(T-p)}$$
$$\Sigma_r \leftarrow \frac{\sum_{t=p+1}^T \mathbf{R}_t \left(\Sigma_c^{(k+1)}\right)^{-1} \mathbf{R}_t'}{n(T-p)}$$

where \mathbf{R}_t is the residual at t, i.e. \mathbf{X}_t subtracting all predictions, using all the **updated** value of $A_{1:p}, B_{1:p}, \beta_{1:K}$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 18/33

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Algorithm 1 Iterative Least-square for Matrix Auto-regressive Model with Vector Covariates
Input: $m \times n$ matrix data $\{\mathbf{X}_{1}\}_{t=1}^{T}$, $d \times 1$ associated vector covariates $\{\mathbf{z}_{t}\}_{t=1}^{T}$.
ı: Initialization: Randomly initialize $A_{1:p},B_{1:p},\pmb{\beta}$ from standard normal distribution. Initialize
both Σ_r and Σ_c as identity matrices. Set convergence threshold at $\tau = 10^{-5}$ and $\Delta = 1$.
2: while $\Delta > \tau$ do
3: for $l = 1 : p$ do
4: Update A_l based on Eq. 7
5: Update B_l based on Eq. 8
6: end for
7: Update $\boldsymbol{\beta}$ based on Eq. 9, with the calculation simplified by Eq. 13 and Eq. 14.
8: Update Σ_c based on Eq. 10
9: Update Σ_r based on Eq. 11
10: Re-scale each pair of $(\widehat{A_l}, \widehat{B_l})$ such that $\ \widehat{A_l}\ _F = 1$ and $\operatorname{sign}(tr(\widehat{A_l})) = 1$
11: Re-scale $\widehat{\Sigma}_c, \widehat{\Sigma}_r$ such that $\ \widehat{\Sigma}_r\ _F = 1$.
12: Calculate the convergence of $B_l\otimes A_l$ with the upper bound in Eq. 12, denoted as Δ_1 .
13: $\Delta_2 \leftarrow \ \boldsymbol{\beta}^{(k+1)} - \boldsymbol{\beta}^{(k)}\ _F; \Delta_3 \leftarrow \ \Sigma_c^{(k+1)} - \Sigma_c^{(k)}\ _F + \ \Sigma_r^{(k+1)} - \Sigma_r^{(k)}\ _F$
14: $\Delta \leftarrow \max(\Delta_1, \Delta_2, \Delta_3)$
15: end while
16: Output: $\widehat{A}_{1m} = \widehat{B}_{1m} = \widehat{A} = \widehat{\Sigma}_{m} = \widehat{\Sigma}_{m}$

Figure: Algorithm Overview

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 18/33

The Feature Selection Problem

Given the computational algorithm, the performance of our model also relies on the selection of the following hyperparameters:

• p: the maximum lag of the auto-regressive term, i.e. the maximum number of \mathbf{X}_l used as the predictor (AIC, BIC)

- -

・ロト ・回ト ・ヨト ・ヨト

The Feature Selection Problem

Given the computational algorithm, the performance of our model also relies on the selection of the following hyperparameters:

- p: the maximum lag of the auto-regressive term, i.e. the maximum number of \mathbf{X}_l used as the predictor (AIC, BIC)
- q: the maximum lag of the vector predictor \mathbf{z}_{t-1} . We use \mathbf{z}_{t-1} in our previous discussion, but actually one can use multi-lag predictors: $\mathbf{z}_{t-1}, \mathbf{z}_{t-2}, \ldots, \mathbf{z}_{t-q}$

5 9 9 9 P

The Feature Selection Problem

Given the computational algorithm, the performance of our model also relies on the selection of the following hyperparameters:

- p: the maximum lag of the auto-regressive term, i.e. the maximum number of \mathbf{X}_l used as the predictor (AIC, BIC)
- q: the maximum lag of the vector predictor \mathbf{z}_{t-1} . We use \mathbf{z}_{t-1} in our previous discussion, but actually one can use multi-lag predictors: $\mathbf{z}_{t-1}, \mathbf{z}_{t-2}, \ldots, \mathbf{z}_{t-q}$
- K: the amount of basis functions to use

E 990

イロト 不同 とうせい 不同 と

Given the computational algorithm, the performance of our model also relies on the selection of the following hyperparameters:

- p: the maximum lag of the auto-regressive term, i.e. the maximum number of \mathbf{X}_l used as the predictor (AIC, BIC)
- q: the maximum lag of the vector predictor \mathbf{z}_{t-1} . We use \mathbf{z}_{t-1} in our previous discussion, but actually one can use multi-lag predictors: $\mathbf{z}_{t-1}, \mathbf{z}_{t-2}, \ldots, \mathbf{z}_{t-q}$
- K: the amount of basis functions to use

The selection of p has been discussed in many relevant works, and here we discuss how to select q and K using an ad-hoc procedure called Sparse Group Lasso (Simon et al. 2013).

The Feature/Basis Selection Problem

Figure: Our baseline model has no sparsity.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 20/33

- 2

・ロト ・四ト ・ヨト ・ヨト

The Feature/Basis Selection Problem

Figure: We need to ensure both basis sparsity and feature sparsity.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 20/33

• Our original updating rule for $\beta_1, \beta_2, \ldots, \beta_K$ is:

$$\operatorname{vec}\left(\boldsymbol{\beta}'\right) \leftarrow \left[\sum_{t=p+1}^{T} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)' \left(\Sigma_{c}^{(k)} \otimes \Sigma_{r}^{(k)}\right)^{-1} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)\right]^{-1} \cdot \left[\sum_{t=p+1}^{T} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)' \left(\Sigma_{c}^{(k)} \otimes \Sigma_{r}^{(k)}\right)^{-1} \widetilde{\mathbf{x}}_{t}\right]$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 21/33

• Our original updating rule for $\beta_1, \beta_2, \ldots, \beta_K$ is:

$$\operatorname{vec}\left(\boldsymbol{\beta}'\right) \leftarrow \left[\sum_{t=p+1}^{T} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)' \left(\Sigma_{c}^{(k)} \otimes \Sigma_{r}^{(k)}\right)^{-1} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)\right]^{-1} \cdot \left[\sum_{t=p+1}^{T} \left(\mathbf{z}_{t-1}' \otimes \mathbf{F}\right)' \left(\Sigma_{c}^{(k)} \otimes \Sigma_{r}^{(k)}\right)^{-1} \widetilde{\mathbf{x}}_{t}\right]$$

• Now:

$$\min_{\beta_1,\beta_2,\dots,\beta_K} \frac{1}{2(T-p)} \sum_{t=p+1}^T \widetilde{\mathbf{x}}_t' \left(\widehat{\Sigma}_c \otimes \widehat{\Sigma}_r\right)^{-1} \widetilde{\mathbf{x}}_t + (1-\alpha)\lambda \sum_{k=1}^K \|\beta_k\|_2 + \alpha\lambda \sum_{k=1}^K \|\beta_k\|_1$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 21/33

We can fit the sparse group lasso with accelerated gradient descent. We can end up with a series of estimates of $\beta_1, \beta_2, \ldots, \beta_K$, such that:

- Some $\beta_k = 0$, which means the basis has null effect.
- Some β_k contains 0 coefficient, meaning the basis is not null, but some features at some lag have null effect.

ヘロト ヘヨト ヘヨト ヘヨト

Algorithm 2 Matrix Auto-regressive Model with Vector Covariates + Sparse Group Lasso **Input:** $m \times n$ matrix data $\{\mathbf{X}_1\}_{t=1}^T$, $d \times 1$ associated vector covariates $\{\mathbf{z}_t\}_{t=1}^T$. Group sparsity tuning parameter α .

- 1: Fit the non-sparse, fully-connected model using Algorithm 1, and get the initial estimates: $(\widehat{A}_l, \widehat{B}_l)_{l=1}^p$, vec $(\widehat{\beta}_0')$, $\widehat{\Sigma}_r, \widehat{\Sigma}_c$. Set the initial value of β at $\widehat{\beta}_0$.
- 2: Calculate the partial residual time-series $\mathbf{R}_t = \mathbf{X}_t \sum_{l=1}^p (\widehat{B}_l \otimes \widehat{A}_l) \mathbf{X}_{t-l}$
- 3: Set a grid of λ : $0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_J$
- 4: for j in 1: J do
- 5: Initialize $\boldsymbol{\beta}$ at $\hat{\boldsymbol{\beta}}_{j-1}$.
- 6: Fit Sparse Group Lasso with (α, λ_j) , with regression targets being \mathbf{R}_t and the regressors being $[\mathbf{Z}'_{t,q} \otimes \mathbf{F}_1, \mathbf{Z}'_{t,q} \otimes \mathbf{F}_2 \dots]$, and get the penalized estimates as $\hat{\boldsymbol{\beta}}'_i$
- 7: end for
- 8: Output: $\widehat{A}_{1:p}, \widehat{B}_{1:p}, \widehat{\Sigma}_c, \widehat{\Sigma}_r, \hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_J$

Figure: Ad-hoc sparse group lasso for feature selection.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 21/33

ヘロト 不同 と 不良 と 不良 とうほ

Theoretical Guarantees

1 Background

2 Model Framework

3 Model Estimation

4 Theoretical Guarantees

5 Numerical Experiment

6 Real Data Application: Forecasting The Total Electron Content Map

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 22/33

- 2

Algorithm Convergence Guarantee

Theorem (Algorithm Convergence)

The block coordinate descent (BCD) algorithm guarantees that, from iteration k to k + 1, the loss function descent, denoted as:

$$\Delta_k = \mathcal{L}(\phi^{(k+1)}) - \mathcal{L}(\phi^{(k)}), \quad \phi = (A_{1:p}, B_{1:p}, \beta, \Sigma_c, \Sigma_r)$$

has a lower bound:

$$\Delta_{k} \geq \sum_{l=1}^{p} \lambda_{\min} \left(\sum_{t=p+1}^{T} \mathbf{X}_{t-l} (B_{l}^{(k)})' B_{l}^{(k)} \mathbf{X}_{t-l}' \right) \|A_{l}^{(k)} - A_{l}^{(k+1)}\|^{2}$$
$$\sum_{l=1}^{p} \lambda_{\min} \left(\sum_{t=p+1}^{T} \mathbf{X}_{t-l}' (A_{l}^{(k+1)})' A_{l}^{(k+1)} \mathbf{X}_{t-l} \right) \|B_{l}^{(k)} - B_{l}^{(k+1)}\|^{2}$$
$$\lambda_{\min} \left(\sum_{t=p+1}^{T} \mathbf{z}_{t-1} \mathbf{z}_{t-1}' \right) \cdot \lambda_{\min} \left(\sum_{\tau=1}^{K} \mathbf{f}_{\tau} \mathbf{f}_{\tau}' \right) \|\boldsymbol{\beta}^{(k)} - \boldsymbol{\beta}^{(k+1)}\|^{2}$$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 23/33

Large Sample Asymptotics of the Estimators

Theorem (Large Sample Asymptotics)

Assume that the BCD algorithm reaches the global minimum of the empirical loss function $\hat{\mathcal{L}}(\phi)$, and denote the global minimum reached as $\hat{\phi}_*$, then with probability 1, we have:

$$\sqrt{T}\|\hat{\phi}_* - \phi_0\| \le c_T$$

where T is the total number of frames of the matrix time-series, $\{c_T\} \to +\infty$ is an arbitrary sequence and ϕ_0 is the ground truth parameter of the data generating model.

Numerical Experiment

1 Background

- **2** Model Framework
- **3** Model Estimation
- **4** Theoretical Guarantees
- 5 Numerical Experiment Scenario I: Non-sparse Scenario II: Sparse

6 Real Data Application: Forecasting The Total Electron Content Map

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 25/33

3

To validate our proposed model and algorithm, we design two numerical experiments with simulated data:

• Non-sparse $\beta_1, \beta_2, \ldots, \beta_K$. (Non-sparse scenario)

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 26/33

To validate our proposed model and algorithm, we design two numerical experiments with simulated data:

- Non-sparse $\beta_1, \beta_2, \ldots, \beta_K$. (Non-sparse scenario)
- Sparse $\beta_1, \beta_2, \ldots, \beta_K$. (Sparse scenario)

- 3

We generate our simulated data with the specification of:

- 5000 frames of 3-dimensional vector time-series $\{\mathbf{z}_t\}$, generated via a stationary VAR(1) process.
- K = 1, a single basis function chosen from the Spherical Harmonics family.
- Spatial grid is defined using $(5i, 5j), i, j = 1, 2, \dots, 10$.
- 5000 frames of 10×10 matrix time-series $\{\mathbf{X}_t\}$, generated via our model.
- We specify the true model with p = q = 3, namely the correct time lag of both the auto-regressive term and the vector covariates term are 3.

Scenario I: Non-sparse

To generate the model parameters $A_{1:3}, B_{1:3}, \beta_1, \Sigma_r, \Sigma_c$:

• $A_l, l = 1, 2, 3$ having a banded structure:

$$A_{l}(i,j) = \begin{cases} 0.5^{|i-j|}, & \text{if } |i-j| \le 5\\ 0, & \text{if } |i-j| > 5 \end{cases}$$

and we generate $B_l, l = 1, 2, 3$ randomly from standard normal.

• The covariance structures are generated based on:

$$\Sigma_{s,ij} = \exp\left\{-\frac{|i-j|}{5}\right\}, \quad s \in \{c,r\}$$

note that this means the variance of every matrix cell is 1.

- $\beta_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- We re-scale the $(A_l, B_l), l = 1, 2, 3$ and Σ_r, Σ_c to have $||A_l||_F = 1$, sign $(tr(A_l)) = 1$ for l = 1, 2, 3, and $||\Sigma_r||_F = 1$.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

We evaluate our model based on two major statistics:

- (Estimation Accuracy): The element-wise the root-mean-square error (RMSE) of all model parameters estimators: $\widehat{A}_l, \widehat{B}_l, \widehat{\beta}, \widehat{\Sigma}_r, \widehat{\Sigma}_c$, after the model converges.
- (Prediction Accuracy):

RMSE_{pred} =
$$\sqrt{\frac{1}{(T-p)mn} \sum_{t=p+1}^{T} \|\widehat{X}_t - X_t\|^2}$$

where \widehat{X}_t is the one-step prediction of X_t .

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 27/33

Scenario I: Non-sparse (Results)

Figure: Model fitting results for $p \in \{1, 2, 3, 4, 5\}$, and $q \in \{0, 1, 2, 3\}$. Results are the average of 20 repeated model runs. The ground truth is p = q = 3. Round dot highlights the "correctly-specified" model.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 28/33

Scenario I: Non-sparse (Results)

Figure: Model fitting results for T = 200, 500, 1000, 2000, 5000. An under-specified (red, p = 2) model, a correct (green, p = 3) model and an over-specified (blue, p = 4) are shown respectively.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 28/33

3

ロトス回トスヨトスヨ

Scenario I: Non-sparse (Results)

Figure: The ground truth of A_1, B_1, Σ_c (top row) and the estimated A_1, B_1, Σ_c (bottom row) for model p = q = 3, T = 5,000.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 28/33

- 22

Similar to the data generating scheme as the non-sparse case, we generate a simulated dataset with:

- 8000 frames of 3-dimensional vector time-series $\{\mathbf{z}_t\}$, generated via a stationary VAR(1) process.
- 8000 frames of 20×20 matrix time-series {**X**_t}, generated via our model.
- Spatial grid is defined using $(5i, 5j), i, j = 1, 2, \dots, 10$.
- We specify the true model with p = q = 1, namely the correct time lag of both the auto-regressive term and the vector covariates term are 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- (Basis sparsity) K = 30, and 15 out of the 30 basis functions have null effect on the auto-regressive process, i.e. their $\beta_k = \mathbf{0}$. Denote the collection of these basis functions as \mathcal{K}^0 .
- (Feature sparsity) For the remaining 15 basis functions, we coerce 40% of the elements of their corresponding β_k to be zero. Denote the collection of these basis functions as \mathcal{K}^1 .

- 34

・ロト ・回ト ・ヨト ・ヨト

We run our algorithm on the new simulated data and evaluate the following metrics:

- $\sum_{k \in \mathcal{K}^0 \cup \mathcal{K}^1} \mathcal{I}(|\hat{\beta}_k|_1 = 0)$: total group sparsity.
- $\sum_{k \in \mathcal{K}^0} \mathcal{I}(|\hat{\beta}_k|_1 = 0)$: total group sparsity for the truly sparse basis functions.
- $\sum_{k \in \mathcal{K}^1} \sum_{d} \mathcal{I}(|\hat{\beta_{k,d}}|_1 = 0)$: total feature sparsity, restricted to the non-sparse basis functions.
- $\sum_{k \in \mathcal{K}^1} \sum_d \mathcal{I}(|\hat{\beta_{k,d}}|_1 = 0 \land |\beta_{k,d}|_1 = 0)$: total feature sparsity out of all truly sparse features, restricted to the non-sparse basis functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○
Scenario II: Sparse (Results)

Figure: Group and Individual Sparsity Along the Solution Path: Large Sample Case (T = 8000). The ground truth group sparsity is 15, and the ground truth feature sparsity is 24. $\alpha = 0.95$

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 30/33

э

Real Data: The Total Electron Content Map

2015-03-17/23:57:30 UT

Figure: The Total Electron Content Map: Example at 23:57:30, Mar 17, 2015.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 31/33

イロト イポト イヨト イヨト

Real Data: The Total Electron Content Map

- There are 2,000+ matrices from Jun 2017 \sim Sept 2017, with individual matrix having size 181 \times 361.
- We split the data into a train set (Jun 2017 \sim Aug 2017) and a test set (Sept 2017).
- We apply our model with p = q = 1 and use all spherical harmonics basis at or below order 5 as our basis functions.
- The test set 1-hour prediction RMSE is 1.88 TECu, while the persistence model (simply predict t + 1 with t) has RMSE at 2.56 TECu.

- 3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Real Data: The Total Electron Content Map

Figure: TEC Map 15-min, 1-hour, 3-hour forecasting results at 18:02:30, Sep 8, 2017.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 31/33

글 🖌 🔺 글

A ID 10 A ID 10 A ID 10

Concluding Remarks

In this research project, we:

- Build a novel time-series auto-regressive model with matrix covariates and auxiliary vector covariates.
- Propose an optimization algorithm for model estimation, together with theoretical guarantees.
- Apply the model on simulated and real data, ended up with decent prediction performance and interpretability.

- 2

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Concluding Remarks

What remains to be done/extended include:

- Find scalable implementation of the algorithm to large-scale data problem.
- Estimate the basis function using non-parametric, instead of parametric approach.
- Derive the joint asymptotics of the model parameters.

・ロト ・回ト ・ヨト ・ヨト

References

- Chen, Rong, Han Xiao, and Dan Yang (2021). "Autoregressive models for matrix-valued time series". In: *Journal of Econometrics* 222.1, pp. 539–560.
- Chen, Xinyu and Lijun Sun (2021). "Bayesian temporal factorization for multidimensional time series prediction". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Hsu, Nan-Jung, Hsin-Cheng Huang, and Ruey S Tsay (2021). "Matrix autoregressive spatio-temporal models". In: Journal of Computational and Graphical Statistics 30.4, pp. 1143–1155.
- Jing, Peiguang et al. (2018). "High-order temporal correlation model learning for time-series prediction". In: *IEEE transactions on cybernetics* 49.6, pp. 2385–2397.
 Nortje, Caitlin R et al. (2015). "Spherical harmonics for surface parametrisation and remeshing". In: *Mathematical Problems in Engineering* 2015.
- Simon, Noah et al. (2013). "A sparse-group lasso". In: Journal of computational and graphical statistics 22.2, pp. 231–245.
- Wang, Dong, Xialu Liu, and Rong Chen (2019). "Factor models for matrix-valued high-dimensional time series". In: *Journal of econometrics* 208.1, pp. 231–248.

INFORMS 2022

Matrix Auto-regressive Model with Vector Time-series Covariates

January 29, 2023 33/33

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日