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Background

Flare Prediction with HMI Magnetograms

Bobra, Sun, et al. (2014) introduced the Space-weather HMI Active
Region Patch (SHARP) parameters, which are derived from the
magnetograms of the HMI/SDO images and have been used by a lot
of the solar flare prediction models in recent years (e.g. Bobra and
Couvidat, 2015; Florios et al., 2018; Chen et al., 2019; Camporeale,
2019; Jiao et al., 2020).

There are efforts of using the deep neural network methods which
directly takes the HMI/SDO magnetogram images to predict solar
eruptions (e.g. the Long Short Term Memory network adopted
by Chen et al. (2019) and Liu et al. (2019)).

Recent efforts (Deshmukh, Berger, Bradley, et al., 2020; Deshmukh,
Berger, Meiss, et al., 2020) leverage the shape information contained
in HMI magnetograms to construct interpretable and predictive new
parameters for flare prediction.
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Background

Highlights of Our Work

1 Expand the feature set derived from the HMI magnetograms for flare
prediction using tools from both topological data analysis and spatial
statistics.

2 Derive features not only from the PIL-masked HMI magnetograms
but also from SHARP parameter masks.

3 Marginally but steadily improved the skill score of the classification
model of strong vs. weak solar flares.

Hu Sun (U-M) Sept 2021 Sept 20, 2021 4 / 19



Background

Highlights of Our Work

1 Expand the feature set derived from the HMI magnetograms for flare
prediction using tools from both topological data analysis and spatial
statistics.

2 Derive features not only from the PIL-masked HMI magnetograms
but also from SHARP parameter masks.

3 Marginally but steadily improved the skill score of the classification
model of strong vs. weak solar flares.

Hu Sun (U-M) Sept 2021 Sept 20, 2021 4 / 19



Background

Highlights of Our Work

1 Expand the feature set derived from the HMI magnetograms for flare
prediction using tools from both topological data analysis and spatial
statistics.

2 Derive features not only from the PIL-masked HMI magnetograms
but also from SHARP parameter masks.

3 Marginally but steadily improved the skill score of the classification
model of strong vs. weak solar flares.

Hu Sun (U-M) Sept 2021 Sept 20, 2021 4 / 19



Data

Dataset

We use the Geostationary Operational Environmental Satellites
(GOES) flare list spanning 2010/12 - 2018/06 for collecting flare
events, leading to 399 M/X class flares and 1,972 B class flares
coming from 487 HARP regions.

For each flare, we collect its corresponding high-resolution HMI
magnetogram data from the JSOC at 4 time points: 1, 6, 12, 24
hours prior to the peak flux.

For each flare at any of four time points, raw data of the Br ,Bp,Bt

components of the magnetic field are collected.
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Data

Derive SHARP Parameter Maps

We derive features from the Br component of the magnetic field but
also from other secondary maps derived from the Br ,Bp,Bt

components, which we call SHARP parameter maps.

Hu Sun (U-M) Sept 2021 Sept 20, 2021 6 / 19



Data

Derive SHARP Parameter Maps
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Data

Derive the Polarity Inversion Line (PIL)

We focus specifically on the area adjacent to the polarity inversion
line (PIL) by constructing the PIL mask.
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Feature Engineering Topological Feature

Topological Feature: Betti Numbers

Figure: Feature Engineering Pipeline of Topological Features
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Feature Engineering Topological Feature

Topological Feature: Betti Numbers

Figure: What is a loop?
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Feature Engineering Spatial Feature I: Ripley’s K Function

Spatial Feature I: Ripley’s K Function
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Feature Engineering Spatial Feature I: Ripley’s K Function

Spatial Feature I: Ripley’s K Function

For the thresholded Br mask, we randomly pick 500 pixels, with
sampling probability proportional to |Br |, to construct a point cloud.
Each picked pixel has a pair of (x , y) pixel coordinates in the 2D pixel
grid.

Ripley’s K function:

L(d) =

√√√√√A
n∑

i=1

n∑
j=1,j 6=i

ki ,j

πn(n − 1)
,

where ki ,j = 1 if the i-th and j-th pixel are within distance d , and
n = 500 in our case. A is the area size and is defined as the number
of PIL pixels in our study.
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Feature Engineering Spatial Feature I: Ripley’s K Function

Spatial Feature I: Ripley’s K Function

Figure: Point cloud and the corresponding Ripley’s K function for the Br mask
collected from HARP 377, 1 hour before the M flare peaked at 2011.02.13 17:38.
The top row includes 3 point clouds generated by 3 thresholds at 400G, 1000G,
1600G. The bottom row shows the 3 corresponding Ripley’s K functions.
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Feature Engineering Spatial Feature II: Variogram

Spatial Feature II: Variogram

With the same point cloud as in Ripley’s K function calculation, the
Variogram is:

γ(d) =
1

2
Var[z(si )− z(sj)], (1)

where si = (xi , yi ), sj = (xj , yj) are two arbitrary points in the point
cloud that has a Euclidean distance d in-between, and Var denotes
the variance of a random variable. And z(.) yields the Br value at a
pixel.

In practice, it is hard to find multiple pairs of pixels separated exactly
by distance d . Pairs of pixels will be put into disjoint bins of
Euclidean distance for estimating the Variogram.

Variogram is measuring the variation of Br at two spatial locations
separated by an arbitrary distance d .
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Feature Engineering Spatial Feature II: Variogram

Spatial Feature II: Variogram

Figure: Variogram examples. Vertical dashed line show the center of each
distance interval, and the scatter points are the semi-variance (see equation 1) of
Br values for all pairs of pixels separated by the distance within the interval. The
blue line is the fitted curve for the variogram estimates. Note that the scales of
x,y axes are different across the three graphs.
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Feature Engineering Spatial Feature II: Variogram

Feature Overview

Figure: A Workflow Summary of the Derived Features
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Main Results Prediction Performance

True Skill Score based on Fitted Xgboost Model
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Main Results Interpretation

Feature Importance: Fisher Score

Figure: Normalized Fisher Score for selected features. Four panels correspond to
the 1,6,12,24 hour dataset. Among all 4 datasets, the top features are always the
Ripley’s K function’s principal component score. Some features from other
categories are also ranked among top features.
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Main Results Interpretation

Ripley’s K function: B-flare Example
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Main Results Interpretation

Ripley’s K function: M-flare Example
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Conclusions

Conclusion

In this project, we:

Concentrate on SHARP parameter spatial distributions along the
polarity inversion line regions.

Engineered interpretable and predictive features summarizing the
spatial variation, dispersion patterns of various SHARP quantities,
especially the Br , using tools from TDA and spatial statistics.

Obtained marginal but steady improvement on the solar flare
classification task.

Reveal that the Br channel alone contains flare predictors (based on
Spatial statistics) that are as predictive as (or better than) the
SHARP parameters, which are based on more magnetic field channels.
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