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Background

Flare Prediction with HMI Magnetograms

Bobra, Sun, et al. (2014) introduced the Space-weather HMI Active
Region Patch (SHARP) parameters, which are derived from the
HMI/SDO magnetograms and have been used frequently for solar
flare prediction models in recent years (e.g. Bobra and Couvidat,
2015; Florios et al., 2018; Chen et al., 2019; Camporeale, 2019; Jiao
et al., 2020).

There are efforts using deep neural network methods, which directly
take the HMI/SDO magnetogram images to predict solar eruptions
(e.g. the Long Short Term Memory network adopted by Chen et al.
(2019) and Liu et al. (2019)).

Recent efforts (Deshmukh, Berger, Bradley, et al., 2020; Deshmukh,
Berger, Meiss, et al., 2020) leverage the shape information contained
in HMI magnetograms to construct interpretable and predictive new
parameters for flare prediction.
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Background

Highlights of Our Work

1 Expand the feature set derived from the HMI magnetograms for flare
prediction using tools from both topological data analysis and spatial
statistics.

2 Derive features not only from the PIL-masked HMI magnetograms
but also from the spatial distribution of SHARP parameters.

3 Marginally but steadily improved the skill score of the classification
model of strong vs. weak solar flares.
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Data

Dataset

We use the Geostationary Operational Environmental Satellites
(GOES) flare list spanning 2010/12 - 2018/06 for collecting flare
events, leading to 399 M/X class flares and 1,972 B class flares
coming from 487 HARP regions.

For each flare, we collect its corresponding high-resolution HMI
magnetogram data from the JSOC at 4 time points: 1, 6, 12, 24
hours prior to the peak soft X-ray flux.

For each flare, at all four time points, raw data of the Br ,Bp,Bt

components of the magnetic field are collected.
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Data

Derive SHARP Parameter Maps

We derive features from the Br component of the magnetic field but
also from other secondary maps derived from the Br ,Bp,Bt

components, which we call SHARP parameter maps.
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Data

Derive SHARP Parameter Maps
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Data

Derive the Polarity Inversion Line (PIL)

We focus specifically on the area adjacent to the polarity inversion
line (PIL) by constructing the PIL mask.
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Feature Engineering Topological Feature

Topological Feature: Betti Numbers

Figure: Feature Engineering Pipeline of Topological Features
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Feature Engineering Topological Feature

Topological Feature: Betti Numbers

Figure: What is a loop?
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Feature Engineering Topological Feature

Topological Feature: Betti Numbers

Figure: Final Topological Feature in Persistence Diagram
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Feature Engineering Spatial Feature: Ripley’s K Function

Spatial Feature I: Ripley’s K Function
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Feature Engineering Spatial Feature: Ripley’s K Function

Spatial Feature I: Ripley’s K Function

For the thresholded Br mask, we randomly pick 500 pixels, with
sampling probability proportional to |Br |, to construct a point cloud.
Each picked pixel has a pair of (x , y) pixel coordinates in the 2D pixel
grid.

Ripley’s K function:

L(d) =

√√√√√A
n∑

i=1

n∑
j=1,j 6=i

ki ,j

πn(n − 1)
,

where ki ,j = 1 if the i-th and j-th pixel are within distance d , and
n = 500 in our case. A is the area size and is defined as the number
of PIL pixels in our study.
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Feature Engineering Spatial Feature: Ripley’s K Function

Spatial Feature I: Ripley’s K Function

Figure: Point cloud and the corresponding Ripley’s K function for the Br mask
collected from HARP 377, 1 hour before the M flare peaked at 2011.02.13 17:38.
The top row includes 3 point clouds generated by 3 thresholds at 400G, 1000G,
1600G. The bottom row shows the 3 corresponding Ripley’s K functions.
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Feature Engineering Spatial Feature: Ripley’s K Function

Feature Pipeline Summary
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Main Results

Result: True Skill Score for Xgboost Model
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Main Results

Result: Example of the Ripley’s K function
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Conclusions

Conclusion

In this project, we:

Concentrate on SHARP parameter spatial distributions along the
polarity inversion line regions.

Engineered interpretable and predictive features summarizing the
spatial variation, dispersion patterns of various SHARP quantities,
especially the Br component, using tools from TDA and spatial
statistics.

Obtained marginal but steady improvement on the solar flare
classification task.

The spatial features derived solely from the Br component are as
good or better for flare prediction than full vector SHARP parameters.
Theoretically interesting and important for future missions.
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