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Solar Flare Prediction with LSTM

Data source:

I Space-Weather HMI-Active Region Patch (SHARP)
features, with 12 min cadence.

I GOES dataset from 2010-2018
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Input Time Series

There are two parameters that can configure the input time
series. Data length and the Prediction time.
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Input Time Series
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Input Time Series

We have tried data length to be 1, 6, 12, 24 hours and
prediction time to be 1, 6, 12, 24, 48, 72 hours.
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Machine Learning Task

Task: With all SHARP physical quantities’ time series of
1/6/12/24 hours length as input, classify whether the flare
1/6/12/24/48/72 hours later is an M/X class flare or a B-class
flare.
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Machine Learning Task

Model variations include:

I M/X vs Quite Time

I First M/X flare vs Quiet Time

I First Flare (X/M/C/B) vs Quiet Time

I X vs M vs C vs B intensity regression (w/o Quiet Time)

I Predict the intensity of the strongest flare in the next
24/48 hours.
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Train-Test Set Splitting

Three types of train-test set split, all with roughly two-thirds of
the samples in the training set and the rest in testing set:

I Random Split

I Split by Active Region

I Split by Year

Data standardization is done only on the training set. When
validating the test set, we still use mean and standard deviation
from the training set.
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About LSTM Model
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Figure: LSTM Model

8



Prediction Score example

To do prediction, we can simply plug in any time series with the
same data length as the input data, and get a prediction score
which indicates the probability of seeing an M/X class flare at
the prediction time.
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Prediction Score example
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The Result Metrics
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The Result Metrics
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LSTM Model Variable Importance

To understand the driving force for the prediction score, we used
each of the 20 SHARP features as a single predictor for M/X
class flare, and see how the variable importance would drop.
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LSTM Model Variable Importance
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Variable Importance Selection with LASSO regression

We also tried a simple logistic regression for the classification
task, with LASSO penalty.

LASSO penalty is a kind of penalized regression tool. It will
tend to push some of the variables to have zero effects on the
classification and only retain those variables that are important.
It can also select the most important variable from a block of
highly correlated variables.
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Sharp Transitions of Prediction Score

We define that the prediction curve of an active region before
its first M/X flare goes through a Sharp Transition if:

I there is a time when prediction score is above 0.7, and
persists at least 36 minutes (after transition time)

I starting from the ”after transition time”, any time when
prediction score is below 0.3 and persists at least 36
minutes is called ”before transition time”
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Sharp Transitions of Prediction Score

Figure: A few selected sharp transitions
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Sharp Transitions of Prediction Score

Figure: TOTUSJH time series during transition time
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Sharp Transitions of Prediction Score
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Conclusion

I LSTM model gives high prediction accuracy for many
different classification tasks

I TOTUSJH and SAVNCPP are selected to be the most
significant contributors to the LSTM prediction

I 23 active regions with sharp transitions detected

I Driving force for sharp transition is not uniform, but more
evident within sub-group of active regions
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Step 1: Select PIL candidate pixels

Data Type: Magnetogram with 200,000+ pixels.
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Step 1: Select PIL candidate pixels

Data Type: Magnetogram with 200,000+ pixels.

Figure: A pixel’s neighborhood, 3 × 3 window
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Step 1: Select PIL candidate pixels

Data Type: Magnetogram with 200,000+ pixels.

In every pixel’s neighborhood, we check if there is both a strong
positive polar and a strong negative polar. (default threshold
±100Gauss)
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Step 1: Select PIL candidate pixels

Figure: B-z Component, HARP377, 2011-02-17 14:00:00TAI
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Step 1: Select PIL candidate pixels

Figure: Pixels remained after neighborhood check (5 × 5 window)
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Step 1: Select PIL candidate pixels

Property of the pixels selected:

I Having shape of multiple PIL segments

I Having miscellaneous clusters of pixels not of our interest

I Pixels on the same PIL are not linked well

I The PILs seem to be too thick.
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Step 2: Non-maxima Suppression

Use Prewitt filter to calculate local B-z gradient for each of the
pixel:
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Step 2: Non-maxima Suppression

With both Gx and Gy, we could calculate the direction of the

gradient by arctan(
Gy

Gx
).

And with the direction of the gradient, we could define the
adjacent pixels along the gradient direction of any pixel with
non-zero gradient.
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Figure: Adjacent pixels along gradient direction
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Step 2: Non-maxima Suppression

With both Gx and Gy, we could calculate the direction of the

gradient by arctan(
Gy

Gx
).

And with the direction of the gradient, we could define the
adjacent pixels along the gradient direction of any pixel with
non-zero gradient.

Now we only retain the pixels whose gradient norm is local
maxima along it gradient direction.

23



Step 2: Non-maxima Suppression

Figure: Thin Edges after Non-maxima Suppression
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Step 3: PIL extension

In order to make the PIL drawn to be more connected, we
apply a simple continuity extension to pixels on the PIL.
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In order to make the PIL drawn to be more connected, we
apply a simple continuity extension to pixels on the PIL.

Figure: PIL extension direction
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Step 3: PIL extension

Figure: More connected PILs
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Step 3: PIL extension

Such an extension would add more connectivity to each PIL,
but will add many pixels with small B-z gradients into the PIL.

Optionally, one could only extend on points with large
gradients, and this extension can be conducted recursively.

25



Step 4: Density-Based Clustering

I Generally, the longer the PIL is, the more complex the
local magenetic field structure there is.

I We need to retain the longest PILs and erase the
miscellaneous PILs.
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Step 4: Density-Based Clustering

How to classify PIL pixels into several clusters?

I Connected-component analysis

I Density-based clustering algorithm
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Step 4: Density-Based Clustering

Density-based spatial clustering of applications with noise
(DBSCAN) :

I Locate some ”core” points as the seed for a cluster

I All points within a certain range of core points are in the
same cluster as the core points
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Step 4: Density-Based Clustering

Figure: More connected PILs
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Step 4: Density-Based Clustering

Figure: PILs left after deleting small clusters
28
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Figure: Recalculate USFLUX for HARP377
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