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Background: Multi-Modality Time Series Joint Modeling

In this paper, we investigate a matrix time series autoregression problem where we observe:

[Spatio-Temporal Matrix Time Series]: X1, . . . , XT ∈ RM×N and each Xt is a 2D spatial data

collected on an M ×N grid S . So Xt(i, j) is local data at location (i, j) and time t.

[Auxiliary Vector Time Series]: z1, . . . , zT ∈ RD, and each zt is global data shared across S at t.

The autoregression problem is trying to model E[Xt|(Xt−1, . . . , Xt−P ), (zt−1, . . . , zt−Q)]. A moti-

vating example regarding a space weather real data application is shown in Figure 1:

(A) 2017-05-27 00:02:30 UT (181-by-361) (B) 2017-05-27 15:32:30 UT (181-by-361) (C) 2017-05-28 00:02:30 UT (181-by-361) (D) Global SYM-H (blue) & IMF Bz (green)

Figure 1. (A)-(C) 181× 361 Earth’s Total Electron Content (TEC) Matrix Time Series; (D) 2-dimensional Solar Wind

Parameters Vector Time Series. The forecasting problem is to forecast (C) with (A), (B) and (D).

Existing Work 1 (Matrix Autoregression or MAR):

Xt =
P∑

p=1
ApXt−pB>p + Et, vec (Et)

i.i.d.∼ N(0MN, Σ), Σ =
Multi-Way Covariance︷ ︸︸ ︷

Σc ⊗Σr . (1)

Existing Work 2 (Spatio-Temporal MARwith Fixed-Rank Co-kriging):

Xt =
P∑

p=1
ApXt−pB>p + Et, vec (Et)

i.i.d.∼ N(0MN, Σ), Σ = σ2I +

rank−k, k << MN︷ ︸︸ ︷
FMF>, (2)

where F ∈ RMN×k contains k spatial basis functions and M ∈ Rk×k is a co-kriging parameter.

There is no existing work that can incorporate vector predictors underMAR.

Our Model: Matrix Autoregression with Auxiliary Covariates (MARAC)

Xt =
P∑

p=1
ApXt−pB>p +

Q∑
q=1
Gq ×3 z>t−q + Et, vec (Et)

i.i.d.∼ N(0MN, Σc ⊗Σr), (3)

where Gq ∈ RM×N×D and ×3 is the mode-3 tensor-matrix product. Element-wisely,

Xt(i, j) =
P∑

p=1

〈
Ap(i, :)>Bp(j, :), Xt−p

〉
︸ ︷︷ ︸

Matrix TS Autoregression

+
Q∑

q=1
Gq(i, j, :)>zt−q︸ ︷︷ ︸

Vector TS Local Linear Model

+Et(i, j), (i, j) ∈ S (4)

Xt−p is local data (unique to each spatial location), but has global parameters Ap, Bp;

zt−q is global data (shared across spatial domain), but has local parameters Gq.

If one re-groups the last two terms in (3) as a new error matrix time series Ẽt:

Var

vec

 Q∑
q=1
Gq ×3 z>t−q + Et

 = Var
[
vec

(
Ẽt

)]
= Σc ⊗Σr︸ ︷︷ ︸

temporally-independent spatial covariance

+

temporally-dependent low-rank covariance︷ ︸︸ ︷
FMF>, (5)

where F = [G>1 . . . G>Q], Gq ∈ RMN×D is obtained via unfolding Gq on mode-3 and M =
[Cov (zt−k, zt−l)]1≤k,l≤Q is the covariance matrix of the auxiliary vector time series.

Computational Algorithm: Alternating Penalized MLE

We make an assumption that the coefficient tensors G1, . . . ,GQ are spatially-smooth:

We estimate the model parameters via penalized maximum likelihood estimation (PMLE):

Θ̂ = arg min
{Ap,Bp}Pp=1,Σr,Σc

{gq,d}
Q,D
q=1,d=1

− 1
T

T∑
t=1

`
(
Xt|Xt−1, . . . , Xt−P , zt−1, . . . , zt−Q, Θ

)
︸ ︷︷ ︸

Matrix TS Residual Negative Log-Likelihood

+ λ

Q∑
q=1

D∑
d=1
‖gq,d‖2HK︸ ︷︷ ︸

Tensor Smoothness Penalty

(6)

Given λ > 0, we can convert the infinite-dimensional optimization problem above into a finite-

dimensional problem (the Representer Theorem):

Θ̂ = arg min
{Ap,Bp}Pp=1,Σr,Σc

{γq,d}
Q,D
q=1,d=1

− 1
T

T∑
t=1

`
(
Xt|Xt−1, . . . , Xt−P , zt−1, . . . , zt−Q, Θ

)
+ λ

Q∑
q=1

D∑
d=1

γ>q,dKγq,d︸ ︷︷ ︸
Kernel Ridge Penalty

,

where K ∈ RMN×MN is the kernel Gram matrix based on the spatial kernel function K(·, ·).
We update the parameters one at a time until convergence. Updating Ap becomes:

Ap←

[∑
t

X̃t,−pΣ−1
c BpX>t−p

][∑
t

Xt−pB>p Σ−1
c BpX>t−p

]−1

, (7)

where X̃t,−p is the running residual matrix without the lag-p autoregressive term. For γq =
[γq,1, . . . , γq,D] ∈ RMN×D, the optimization is equivalent to a kernel ridge regression:

vec
(
γq

)
←

 T∑
t=1

zt−qz>t−q

⊗Σ−1K + λT 2I

−1  T∑
t=1

(
zt−q ⊗Σ−1

)
vec

(
X̃t,−q

) , (8)

where X̃t,−q is the running residual matrix without the lag-q auxiliary covariate term.

Theory: MARAC Estimators Asymptotics

Main Result 1: Finite-Dimensional Asymptotics Given fixed M, N and λ = o(T−1/2), and as-

sume that {Xt}Tt=1 is generated by MARAC in (3), and {zt}Tt=1 is a covariance-stationary time

series, then the alternating PMLE estimator of the MARAC model is asymptotically normal:
√

T
[
vec(Θ̂−Θ∗)

]
=⇒ N(0, Ξ),

where Θ∗ contains all the true values of Ap, Bp and all γq, and Θ̂ is its estimator.

Main Result 2: High-Dimensional Asymptotics If MN → ∞ as T → ∞, and assume that the

spatial kernel function K(·, ·) bears a Mercer decomposition K(·, ·) =
∑

s λsφs(·)φs(·), where
λs ∼ s−r, r > 1, then under additional mild regularity conditions, the autoregressive coefficient

Φ = [B1 ⊗ A1 . . . BP ⊗ AP ] has element-wise estimation error bound at OP (1/
√

MN), or
equivalently:

‖vec
(

Φ̂−Φ∗
)
‖ .
√

MN, (9)

with high probability. This is different from the finite-dimensionality result (i.e. OP (1/
√

T )).

Simulation Study

In our simulation study, we conduct four sets of experiments:

(A) Estimation Validation: check the accuracy of the parameter estimators and predictions.

(B) Fast Computation with Kernel Truncation: instead of estimating Gq with kernel ridge regres-

sion as in (8), we use a series of R ∈ {49, 81, 121} basis functions to approximate Gq, which

speeds up the computation a lot in high-dimensional settings at the cost of accuracy.

(C) Lag Selection: check the consistency of selecting the correct lag with AIC & BIC.

(D) Method Comparison: compare MARAC model with competing methods on a prediction task.

Text

(A) Estimation & Prediction accuracy (row) across varying matrix size (column) (B) Estimation of Functional Parameter with PMLE vs Kernel Truncation

(C) Lag Selection Consistency with AIC & BIC

(D) Prediction Accuracy Comparison across Competing Methods

Real Data Application: Global TEC Forecast

In real data application, we consider the problem of forecasting global Total Electron Contents

(TEC) with solar wind parameters as the auxiliary time series, as detailed in Figure 1:

(A) Prediction Accuracy & Predicted Matrix Visualization (B) Fitted MARAC Model Parameter Estimates
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