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Background: Tensor Regression & Tensor Gaussian Process

In this project, we consider a regression problem where the scalar label y ∈ R is associated with

m-mode tensor covariate X ∈ RI1×I2×...Im. Classic parametric scalar-on-tensor regression model

formulates the relationship between y and X as:

y = 〈W ,X〉 + ε, (1)

where W ∈ RI1×I2×...Im is the tensor regression coefficient and ε is the additive noise term

and 〈·, ·〉 is the tensor inner product. Typically, W is assumed to be low-rank and follow a

rank-(r1, r2, . . . , rm) Tucker decomposition:

W = S ×1 U>1 ×2 U>2 ×3 · · · ×m U>m, (2)

where S ∈ Rr1×r2×···×rm is the “core” tensor, with Πm
k=1rk << Πm

k=1Ik, Uk ∈ Rrk×Ik and ×k is

the kth-mode tensor mode product. See [1] for details on these tensor algebra concepts.

In [2], the regression model (1) with the assumption (2) is re-formulated as a tensor Gaussian

Process (Tensor-GP) model:

y = f (X ) + ε, f (·) ∼ GP (0, k(·, ·)) , (3)

where k(·, ·) is the multi-linear tensor kernel function:

k(X1,X2) = vec (X1)>
(

U>mUm ⊗U>m−1Um−1 ⊗ · · · ⊗U>1 U1
)

vec (X2) , (4)

where vec (·) is the vectorization operator and ⊗ is matrix Kronecker product.

Methodology Overview

In this project, we consider X as an H ×W × C multi-channel imaging tensor with H, W, C as

the height, width and number of channels, respectively. We expand the Tensor-GP in (3) into a

two-step procedure (called Tensor-GPST):

1. (Tensor Contraction): we estimate a latent tensor Z ∈ Rh×w×C with h << H, w << W for X ;
2. (Tensor GPR): we then estimate the Tensor-GP regression model between y and Z .

Figure 1. Tensor Contraction + Tensor GP Regression Procedure

Tensor Gaussian Process with Spatial Transformation (Tensor-GPST)

Given data {Xi, yi}Ni=1, we propose the following framework:

yi = f ◦ g(Xi) + εi, (Tensor-GPST)

Zi = g(Xi) = Xi ×1 A×2 B×3 IC (Tensor Contraction)

f (Zi) ∼ GP (0, k(·, ·)) ,k(Zi,Zj) = vec (Zi)> (K3 ⊗K2 ⊗K1) vec
(
Zj

)
, (Tensor GPR)

where we specify Km = U>mUm, m = 1, 2, 3. Equivalently, our model specifies a Tensor-GP:

yi = h(Xi) + εi, h(·) ∼ GP (0,K(·, ·))
K
(
Xi,Xj

)
= vec (Xi)>

[
K3 ⊗

(
B>K2B

)
⊗
(

A>K1A
)]

vec
(
Xj

)
(5)

Loss Function & Tensor Contraction with Total-Variation Penalty

We propose to minimize the following penalized negative marginal log-likelihood of y for param-

eter estimation:

L(y|A, B, U1, U2, U3, σ) = 1
2

log
∣∣∣K + σ2IN

∣∣∣ + 1
2
y>

(
K + σ2IN

)−1
y︸ ︷︷ ︸

Negative Marginal Log-Likelihood `(y|A, B, K1, K2, K3, σ)

+λR(A, B), (6)

where KN×N is the kernel gram matrix based on the kernel in (5) and R(A, B) is a total-variation
penalty over A, B. To see the exact form of R(A, B), first consider the tensor contraction step:

Figure 2. Breakdown of the Tensor Contraction Operation on the Input Imaging Data. Superscript (c) denotes the
cth channel of tensor.

Essentially, the (s, t, c)th entry of Zi is computed via: Zi(s, t, c) =
〈

A(s, :)>B(t, :),Xi(:, :, c)
〉
, and

let Wst = A(s, :)>B(t, :) be the “feature map” for the (s, t)th feature of the cth channel of Xi, we

penalize its anisotropic total variation (TV) norm:

‖Ws,t‖TV =
H−1∑
i=1

W∑
j=1

∣∣Ws,t(i + 1, j)−Ws,t(i, j)
∣∣ +

H∑
i=1

W−1∑
j=1

∣∣Ws,t(i, j + 1)−Ws,t(i, j)
∣∣ , (7)

which induces the penalty over A, B as:

h∑
s=1

w∑
t=1
‖Ws,t‖TV = ‖∇xB‖1 × ‖A‖1 + ‖B‖1 × ‖∇xA‖1 := R(A, B). (8)

Estimating Algorithm: Alternating Proximal Gradient Descent

To minimize the loss in (6), we attempt to update the model parameters one at a time in

the order of: A → B → (U1, U2, U3) → σ → A → . . . . The gradients of `(·) can be

easily computed since K = ŨŨ> where Ũ = X̃> (IC ⊗B⊗A)> (U3 ⊗U2 ⊗U1)>, with
X̃ = [vec (X1) ; vec (X2) ; . . . ; vec (XN )], and Woodbury identity can be used to compute

(K + σ2IN )−1 without incurring a computational cost at O(N3).
To update A at iteration i, we need to further consider R(A, B) by applying the proximal oper-

ator to the gradient descent update Â(i+1
2) = Â(i) − ηi∂`/∂A:

Â(i+1) = proxTV
(

Â(i+1
2)
)

= arg min
A

{
1

2ηi

∥∥∥A− Â(i+1
2)
∥∥∥2

F
+ λR(A, B̂(i))

}
. (9)

The proximal operator in (9) is essentially solving 1-D fused lasso problem for each row of A:

A(i+1)(s, :)← arg min
α∈RH

1
2ηi

∥∥∥α− Â(i+1
2)(s, :)

∥∥∥2

F
+λ1·

H∑
j=2
|α(j+1)−α(j)|+λ2·‖α‖1, s = 1, 2, . . . , h,

where λ1 = λ‖B(i)‖1, λ2 = λ‖∇xB(i)‖1. In our paper, we further prove that the algorithm

converges to a local minimum with rate O(1/K), with K being the total number of iterations.

Simulation Experiment

We simulate a 3-channel imaging tensor dataset Xi of size 25× 25× 3, and put a 5× 5 signal block
in one of the three channels, leading to three patterns of tensor data (see Figure 3a for samples

of each pattern).

(a) Examples of Simulated Tensor Data. Dashed boxes are

possible locations of signal blocks.

(b) Estimators from Tensor-GPST. Only non-zero

feature maps are plotted.

Figure 3. Simulation Samples & Estimators from our Tensor-GPST. The feature maps are capturing signal blocks.

More numerical results are available in the paper.

Real Data Application: Solar Flare Intensity Forecast

We apply our model to a solar flare intensity prediction problem where the input tensor data are

10-channel astronomical images, each having size 50× 50. The results are:

Model
Training (75% of the samples) Testing (25% of the samples)

RMSE R2 MSLL TSS RMSE R2 MSLL TSS

Tensor-GP 0.646±0.019 0.336±0.044 1.028±0.134 0.466±0.039 0.772±0.239 0.182±0.114 1.138±0.085 0.362±0.159
CP 0.564± 0.035 0.501± 0.077 − 0.625± 0.069 0.706±0.051 0.230±0.078 − 0.398±0.092

Tucker 0.679±0.014 0.269±0.028 − 0.426±0.052 0.683±0.040 0.259±0.079 − 0.414±0.134
Tensor-GPST 0.661±0.014 0.305± 0.023 1.005±0.021 0.449±0.040 0.681±0.043 0.265±0.087 1.035± 0.061 0.412±0.112

Table 1. MSLL: Mean Standardized Log Loss; TSS: True Skill Score. Tensor-GPST achieves much better performance

than classical Tensor-GP [2] and is comparable to CP/Tucker low-rank tensor regression.

Figure 4. (Panel 1,2) AIA-131 Channel Average for B-class and M/X class flares. (Panel 3) Estimator of K3 reveals
the channel-channel covariances. (Panel 4) Selected pixels from the tensor contraction step. Our method makes

scientific interpretation for tensor regression model easier. Unit for AIA-131 is Data Number (DN) per second.
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