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Abstract We develop a mixed long short‐term memory (LSTM) regression model to predict the
maximum solar flare intensity within a 24‐hr time window 0–24, 6–30, 12–36, and 24–48 hr ahead of time
using 6, 12, 24, and 48 hr of data (predictors) for each Helioseismic and Magnetic Imager (HMI) Active
Region Patch (HARP). The model makes use of (1) the Space‐Weather HMI Active Region Patch (SHARP)
parameters as predictors and (2) the exact flare intensities instead of class labels recorded in the
Geostationary Operational Environmental Satellites (GOES) data set, which serves as the source of the
response variables. Compared to solar flare classification, the model offers us more detailed information
about the exact maximum flux level, that is, intensity, for each occurrence of a flare. We also consider
classification models built on top of the regression model and obtain better results in solar flare
classifications as compared to Chen et al. (2019, https://doi.org/10.1029/2019SW002214). Our results suggest
that the most efficient time period for predicting the solar activity is within 24 hr before the prediction time
using the SHARP parameters and the LSTM model.

1. Introduction

Space weather involves the dynamical processes of the Sun‐Earth system that may affect human life and
technology. The most destructive consequences of space weather, ranging from electric power disruptions
to radiation hazards for astronauts, are due to energetic solar eruptions, producing both magnetic distur-
bances in the solar wind known as coronal mass ejections (CMEs) and intense electromagnetic radiation
known as solar flares.

Given their destructive capability, the predictions of energetic space weather events are critical for
safeguarding our technological infrastructure. Extreme space storms—those that could significantly degrade
critical infrastructure—could disable large portions of the electrical power grid, resulting in cascading
failures that would affect key services such as water supply, health care, and transportation. The threat
assessment report by the Lloyd's insurance company (Maynard et al., 2013) concludes that extreme events
could cause $2.6 trillion in damage with a recovery time of months. An earlier report by the National
Research Council (Baker et al., 2009) arrived at similar conclusions.

While there are known precursors to these eruptions, accurate predictions of their occurrence remain very
difficult. The current space weather forecasting based on physical models is far from reliable: The forecasting
window is only minutes away from the current time point, and the accuracy is low. Previous work has estab-
lished that solar eruptions are all associated with highly nonpotential magnetic fields that store the neces-
sary free energy. The most energetic flares come from very localized intense kilogauss photospheric fields
known as active regions (Forbes, 2000; Schrijver, 2009). Measurement of these fields was greatly increased
by the advent of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics
Observatory (SDO) launched on February 2010. HMI provides vast quantities of data in the form of
high‐cadence high‐resolution vector magnetograms. These data are subdivided into HMI Active Region
Patches (HARPs), which correspond to localized regions of intense magnetic fields. While HARPs are very
similar to National Oceanic and Atmospheric Administration (NOAA) active regions, they frequently define
different spatial regions. Parameters relevant to solar eruptions are calculated from the HARP vector mag-
netic fields and saved with the data files which are designated as Space‐Weather HMI Active Region
Patches or SHARPs (Bobra et al., 2014).
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Currently, over 7,000 HARPs have been recorded, each one with full vector data saved on a 12‐min cadence
for a period of approximately 14 days required to rotate across the disk. How to make the best use of the large
amount of data available to provide reliable real‐time forecasting of space weather events is one of the major
questions for scientists in the field. Recently, data‐driven approaches are gaining attention in the space
science community with much more data becoming available. Scientists have adopted different machine
learning algorithms to perform various space weather prediction tasks, including the solar flare classifica-
tion using the SDO/HMI SHARP parameters and other data sets; see Barnes et al. (2016), Leka and
Barnes (2018), Liu et al. (2019), Camporeale (2019), Leka et al. (2019a), and Leka et al. (2019b) for reviews
and references therein. Among all the papers mentioned, Liu et al. (2019) also used the Geostationary
Operational Environmental Satellites (GOES) data set and adopted the long short‐term memory (LSTM)
technique to predict solar flares. In contrast, in this paper, we propose a different mixed LSTM model,
and we consider not only classification but also regression to predict the exact intensities rather than the
labels of the solar flares. Moreover, our data preprocessing gives a new way of defining response variables
and takes quiet time data into consideration.

Chen et al. (2019) showed that the time series of SHARP parameters from the SDO/HMI data provide useful
information for distinguishing strong solar flares of M/X class from weak flares of A/B class roughly 24 hr
prior to the flare event. These SHARP parameters are derived from the HMI images based on physically
meaningful quantities of the active regions where the flares emerge from; see Bobra et al. (2014) for detailed
descriptions of these features. To make the task of binary classification manageable, Chen et al. (2019) only
considered the B and M/X flares, ignoring the more prevalent C flares. This design is due to the considera-
tion that flare classes are arbitrarily categorized based on a continuous logarithmic scale of flare intensity
(radiant power level), thus strong C flares are essentially indistinguishable from weak M flares.

Figure 1 shows the flare history (B/C/M/X classes) for two HARPs (377 and 746) and time evolution of two
important SHARP parameters, TOTUSJH and SAVNCPP, for a period of 10 days (labeled on the x axis).
Specifically, TOTUSJH stands for total unsigned current helicity, and SAVNCPP stands for sum of the mod-
ulus of the net current per polarity. We can see that many incidences of C flares accompany a strong flare (of
M/X class) and that the SHARP parameters evolve in continuous but locally stochastic ways during the
energy buildup and release stages of strong flares. Therefore, it is important to consider the entire time series
with flares of all classes, especially the highly prevalent C flares, when training machine learning models for
flare prediction as opposed to only the time point where a weak (B) or strong (M/X) flare occurs as is done in
Chen et al. (2019).

As found in the GOES data set, flare events occur sparsely, at irregular intervals, and at highly varying inten-
sity levels, including long gaps between events, all of which present a unique challenge in the data analysis.
We note that due to the fact that the amount of information contained in the observed data is limited, the
inferential objective should be geared toward extracting the maximum amount of available information
and avoiding overinterpreting the data. Instead of seeking to model the flare intensity in continuous time
for every time point, we model aggregated quantities instead, for example, the maximum flare intensity
within a fixed length time window (such as ±12 hr). In this way, we attach an intensity value to every data
point that has a recorded flare in the neighboring ±12‐hr time window. For the other time points, we define
them as being “quiet” locally with an indicator function attached to it. We will explain the details of this data
preparation process in section 2.1. In our proposed prediction model, we are able to predict the maximum
flare intensity level within a fixed length time window T hours in the future, where T can be specified to
a desired value such as 12 or 24 hr, using the time series of SHARP parameters in the past. As a by‐product,
we can classify the predicted events into strong or weak flares according to the flare level definitions.

2. Methodology

We provide a detailed description of the data preprocessing pipeline in section 2.1. Amixed LSTM regression
model (Hochreiter & Schmidhuber, 1997) that can directly predict the solar flare intensity is introduced in
section 2.2, including the model structure and a novel loss function. Section 2.3 covers three binary classifi-
cation models based on the mixed LSTM regression model. They all try to distinguish the M and X flares
from other flares (including or excluding the C flares) by making use of the predicted intensities given by
the regression model.
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2.1. Data Preparation

Themachine learning models that we aim to train are prediction models, which require two sources of input
data: the feature set (a.k.a. predictors) and the response variables. In this section, we give the details of the
data sources and how we prepare the data for training and testing the machine learning models.

For response variables, we use flare events recorded in the GOES data set ranging from 1 May 2010 to 20
June 2018. Within this time range, there are a total of 12,012 recorded flares. See flare‐event‐only data set
in Figure 2 for the distribution of the flare events in GOES data set. Note that the theoretical distribution
of the flare events should be a power law distribution. The reduced number of recorded flares in lower
energy levels is because events are lost in the background and go undetected. Therefore, the observed distri-

bution is different from the theoretical distribution, and we are focused on
the observed information in this paper.

For the source of data for features/predictors, we consider data from 860
HARPs. For the chosen time period (1 May 2010 to 20 June 2018), there
are approximately 7,000 HARPs, many occurring without flares. From
these, in order to maintain the quality of the data, we downselect the
HARPs to a group of 860 based on the criteria that (1) the longitude of
the HARP should be within the range of ±68° from Sun central meridian,
to avoid projection effects (see Bobra & Couvidat, 2015 and Chen et al.,
2019) and (2) the missing SHARP parameters should be fewer than 5%
of all in the HARP, to make sure that the missing data is not significantly
large to cause any bias in model training.

For eachHARP, there is a time series of vectormagnetogramswith 12‐min
cadence. Here we consider the time series as a video with one frame every
12 min. We use the SHARP parameters, which are scalar variables derived
from the full photospheric vector magnetic field. The SHARP parameters
are calculated over the magnetogram of the each frame; see Bobra et al.
(2014) for a detailed description of the calculations. Of all the SHARP para-
meters, we use USFLUX, MEANGAM, MEANGBT, MEANGBZ,
MEANGBH, MEANJZD, TOTUSJZ, MEANALP, MEANJZH, TOTUSJH,
ABSNJZH, SAVNCPP, MEANPOT, TOTPOT, MEANSHR, SHRGT45,
SIZE, SIZE_ACR, NACR, and NPIX in our study (see the definitions of

Figure 1. Examples of physical parameters derived from two HARPs, (a) 377 and (b) 746. The blue and red curves show the time variation of TOTUSJH and
SAVNCPP quantities, respectively. Here, TOTUSJH stands for total unsigned current helicity, and SAVNCPP stands for sum of the modulus of the net current
per polarity. Each small vertical line represents a recorded flare event. The height of the line is proportional to the log scale flare intensity, while red, green,
and blue represent M/X flare, C flare, and B flare, respectively.

Figure 2. The distribution of nonquiet samples' flare intensities (I) in flare‐
event‐only data set and full data set, where flare‐event‐only data set only
takes flare intensities recorded on GOES data set as response variables. The
definition of full data set can be seen in section 2.1.1. Red line is the
fitted Cauchy distribution with location parameter x0 = ‐5.84 and
scale parameter γ = 0.31.
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these parameters in Table 1). Therefore, each frame corresponds to one
vectormagnetogram and a 20 × 1 SHARP vector. EachHARP corresponds
to a data matrix with 20 columns and “number of frames (vector magneto-
grams)” rows. These data are provided by the Stanford Joint Science
Operations Center (see https://jsoc.stanford.edu).
2.1.1. Response Variable
Since some of the flares recorded in the GOES data set happened in
HARPs that are not recorded in the filtered JSOC data, we consider
10,349 out of the total 12,012 flares recorded in the GOES data set during
the time range indicated on Table 2. Moreover, the flares recorded in the
GOES data set are listed by NOAA active region numbers, while the cor-
responding photospheric magnetic field is identified with HARP patches,
which use different criteria to identify and group the strong field regions.
Consequently, there is the potential issue of a single HARP corresponding
to multiple active regions; in fact, roughly 20% of SHARP patches include
components from multiple active regions. This problem has been
acknowledged in Chen et al. (2019), and more details can be found
therein. In this paper, we do not address this potential problem caused
by the data but focus on the methods for modeling. We speculate that this
potential problem of mismatch of SHARP and GOES data may or may not
result in biases for prediction models while might incur loss of statistical
efficiency due to the extra noise brought in.

In order to make maximum use of the data, we consider not only the class
of each flare but also the exact value of the flare intensity which is defined
as the peak flux in watts per square meter (W/m2) of soft X‐rays with
wavelengths 100 to 800 pm. Moreover, since the flare intensity spans

orders of magnitude, we take the log10 transform (see Table 3) in order to better handle the extreme values,
X and M flares. All flare intensities mentioned later are log10 scale intensities if not further specified.

After performing the data processing as described above, there are over 10,000 flares identified from a time
history of X‐ray intensity levels. However, considering only the peak intensity level recorded at a given time
point as in Chen et al. (2019), there are some limitations, stated below.

1. Most of the M and X flare events are accompanied by much more frequent C flares. If we simply assign
the response variable based on flares' peak times, two flares happening adjacent to each other with totally
different intensities can have a large amount of overlapping training data (time series). Two observations
with similar training data but quite different response variables would confuse the model.

2. Even though there are over 10,000 flare records in GOES data set, they are not all in the recorded range of
the 860 HARP videos. Also, the number of the strong flares which we care the most are limited (see
Table 2). Besides, some of the HARP videos are not suitable for use in training machine learning models
due to large amounts of missing entries in the SHARP parameters. Therefore, the effective number of
flare events that we can use for training/testing the machine learning model is not as large as expected.

3. The recorded flares only occupy a very small fraction of the time series of observations, that is, the
SHARP parameters. Those time points without a recorded flare might be an unrecorded weak flare near
a stronger one or most likely a “flare‐free” time point. Considering these time points as contrasts to the

Table 1
List of SHARP Parameters and Brief Descriptions

Parameter Description

TOTUSJH: Total unsigned current helicity
TOTUSJZ: Total unsigned vertical current
SAVNCPP: Sum of the modulus of the net current per polarity
USFLUX: Total unsigned flux
ABSNJZH: Absolute value of the net current helicity
TOTPOT: Proxy for total photospheric magnetic free energy density
SIZE ACR: Deprojected area of active pixels (Bz magnitude larger

than
noise threshold) on image in microhemisphere (defined
as
one millionth of half the surface of the Sun)

NACR: The number of strong LoS magnetic‐field pixels in the
patch

MEANPOT: Proxy for mean photospheric excess magnetic energy
density

SIZE: Projected area of the image in microhemispheres
MEANJZH: Current helicity (Bz contribution)
SHRGT45: Fraction of area with shear > 45°
MEANSHR: Mean shear angle
MEANJZD: Vertical current density
MEANALP: Characteristic twist parameter, α
MEANGBT: Horizontal gradient of total field
MEANGAM: Mean angle of field from radial
MEANGBZ: Horizontal gradient of vertical field
MEANGBH: Horizontal gradient of horizontal field
NPIX: Number of pixels within the patch

Table 2
The Number of X/M/C/B Flares Recorded in Each Year in the GOES Data Set During the Time Range 1 May 2010 to 20 June 2018

Class/Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

X 0 8 5 12 15 2 0 4 0 46
M 8 84 110 90 169 128 7 37 0 633
C 64 788 906 1,105 1,231 1,194 244 225 11 5,768
B 512 519 398 418 94 428 722 606 205 3,902
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time points with flares can help the model better distinguish the strong
flares from the others. Therefore, discarding this piece of information
would impair the performance of the prediction model.

Therefore, in order to overcome these drawbacks, we propose the follow-
ing definition of response variables in our prediction model: For each
frame, we define its real‐time intensity as the maximum flare intensity
that happened within a 24‐hr time window (12 hr before and 12 hr after).
In other words, instead of focusing on each recorded flare in GOES data
set, we only care about the largest flare that happened in each frame's
24‐hr time window. By applying this new mechanism, we can assign each
frame a response variable. Correspondingly, the new data set is called
“full data set” (see the distribution of the flares in the constructed full data

set as compared to the flare‐event‐only data set in Figure 2). As a result, the nonquiet sample size of the full
data set is over two times larger as compared to the flare‐event‐only data set, 22,928 as opposed to 10,349.
Plus, the response variables of those C flares happening next to strong flares (M or X) are redefined as high
intensities, which is certainly more reasonable for model training. Most importantly, this mechanism more
accurately portrays the processes of solar activities: Instead of being single‐time‐point incidences, they are
processes of extended time evolution.

A natural question is how to deal with the frames where there is no flare recorded in the 24‐hr time window.
We define one more binary response variable to denote the “flaring” or “nonflaring” of the 24‐hr time win-
dow—1 means there is at least one flare (M/X/C/B‐class) recorded in the GOES data set within the 24‐hr
window, while 0 means no flare recorded in the GOES data set within the window.

To recap, for each frame, we assign it a two‐dimensional response variable; the first dimension Q corre-
sponds to the “local quietness” or “local nonquietness” (Boolean, 1 for having a flare event within the
24‐hr window and 0 for not having a flare event within the 24‐hr window), while the second dimension I
stands for its real‐time intensity on the log10 scale (continuous). Specifically, if a sample has Q = 0, then
we annotate the second dimension of its response variable as N/A (see Table 4). An example of how we
define the response variable [Q, I] for HARP 377 is shown in Figure 3.
2.1.2. Input Data Preprocessing Pipeline
A detailed diagram of how we prepare the raw data for machine learning is shown in Figure 4. We briefly
describe it here. Suppose we aim to train a model that uses m hours of SHARP parameters to predict the
maximum flare intensity in the 24‐hr window beginning at n hours after. Since the time cadence of
our data is 12 min, there are five observed frames (magnetograms) at each hour. Each video needs to contain
5 × mþ nþ 24ð Þ consecutive frames to have at least one sample available. We take samples every 2 hr
(10 frames), a reasonable step size which is neither too long to capture the detailed behaviors of the HARP
nor so short that it causes oversampling of the time series. We take HARP 394 as an example. There are
1,334 frames in total. The training samples include frame 0 ∼ frame 5m − 1, frame 10 ∼ frame 5m + 9, …,
frame 10k ∼ frame 5m + 10k −1, …. Correspondingly, the response variables include the maximum flare
intensities recorded within frame 5(m + n) ∼ frame 5(m + n + 24) −1, frame 5(m + n) + 10 ∼ frame
5(m + n + 24) + 9, …, frame 5(m + n) + 10k ∼ frame 5(m + n + 24) + 10k −1, …, where k = 0,1,2… and
5(m + n + 24) + 10k − 1 < 1334.

We split the training and testing data by years in order to avoid information leaking. Since all the recorded
data range from 2010 to 2018, we have that roughly 63% of flares happened before 2015 (6,536 out of

10,349). We note that the corresponding sample size as obtained by the
data preparation described above has a similar flare rate. Each HARP only
has one video, so no HARP is divided in both the training and testing sets.
In this study, we split all flares that happened before 1 January 2015 into
the training set and the rest into the testing set. After splitting the data into
training/testing samples, we normalize all the data by subtracting the
mean and dividing by the standard deviation computed from the training
data (Hastie et al., 2009, chapter 7.10). No information from the testing
data is used in the normalization step.

Table 3
Transformation From Flares Class to Continuous Intensity Values
We Adopt

Flare class Peak flux range (W/m2) log10 intensity

X ≥10 −4 ≥ −4
M 10 −5to10 −4

−5to −4
C 10 −6to10 −5

−6to −5
B 10 −7to10 −6

log10
−7to −6

Table 4
Examples of How We Define Response Variables Given the Flare Labels

Label Response variable ([Q,I])

M1.5 [1, −4.824]
X1.6 [1, −3.796]
C7.2 [1, −5.143]
Quiet [0, N/A]

Note. Quiet stands for one quiet sample. See section 2.1.1 for details.
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Some of the HARPs have missing frames, which result in the time interval
between two adjacent frames being longer than 12min. In this case, we set
up a tolerance threshold: If the number of missing frames in total for one
sample input is less or equal to 10, we apply hot deck imputation
(Andridge & Little, 2010) to fill the missing values. However, if there are
more than 10 frames missing, we drop the sample.

2.2. Model Description

We adopt a mixed LSTM (Hochreiter & Schmidhuber, 1997) regression
model to portray the relationship between SHARP parameters and flares,
with a novel loss function to measure the differences between predicted
results and the two‐dimensional response variables defined in
section 2.1.1. The LSTMmodel predicts outcomes using trained nonlinear
transformations of input parameters and has been applied to classification
of time‐series data (Goodfellow et al., 2016, chapter 10). It should be noted
that in Chen et al. (2019), the LSTM is only used for binary classifications,
whereas in this paper, the LSTM is used for both regression and classifica-
tion. We call the proposed model a mixed LSTM regression model in that
it is an LSTM model combining regression and classification tasks.
2.2.1. Model Structure
The flowchart of the model is shown in Figure 5. For each sample, the

input/predictor is 5m sets of SHARP parameters (see Figure 4), a 1 × 5m × p tensor. Again,m is the number
of hours of data we use for prediction before current time point and n is number of hours from 24‐hr win-
dow's left bound to now. m takes value from 6, 12, 24, and 48, which are a series of data lengths typically
considered for training prediction models for solar flares; n takes values from 0, 6, 12, and 24; and p takes
the value of 20, since we consider 20 SHARP parameters. The output/response is a 2 × 1 vector, including

the predicted quiet score, Q̂, and predicted intensity, Î (see Table 4).

As shown in Figure 5, the model starts with LSTM layers. We introduce dropout layers (Srivastava et al.,
2014a) between adjacent LSTM layers with dropout ratio = 0.3. The number of LSTM layers = 4, the
dimensionality h of the LSTM layers and the output space is 30, and the sample size N in one batch is set
to be 40. Take a model with m = 24 and n = 6 as an example. We have 38,906 samples available in training
set (see section 2.1.2). For each epoch, we randomly assign them to 41,869/40 ≈973 batches. Therefore, the
input is one batch out of 973, a 40 × 120 × 20 tensor. After the LSTM layers, the output is a 40 × 120 × 30 ten-
sor, given h = 30. Then, it goes through the truncation procedure, during which the tensor becomes
40 × k × 30, typically k≪ 120. Considering that LSTM is a sequential model for time series (Goodfellow et al.,
2016, chapter 10), the choice of k = 5m = 120 corresponds to the sequence prediction model that explicitly
adopts all these 120 input frames. However, our main goal is to capture the behavior of the 5n subsequent
HARP frames. Therefore, the output from the latter few frames (k frames) suffice for making the desired pre-
dictions. Specifically, k takes the value of 1 in our models. Nevertheless, we have tried taking more than one
(k = 2, 5, 10…) frames' output into the next layer and did not obtain a significantly better result.

After the LSTM and truncation layers, we feed it to two separate submodels for Q and I's training, respec-
tively, each of which contains two dense layers. The first dense layer serves the purpose of reducing the sec-
ond dimension of the tensor to 1, while the second condenses the third dimension to 1. Intuitively, the first
dense layer works to combine all the information in all k frames to 1 frame for each feature and the second
combines information of all p features into 1 superfeature. A Relu function is added between two dense
layers to break the linearity. Since we take k = 1 in our models, the Dense Layers I1 and II1 shown in
Figure 5 are deprecated, leaving only Relu functions. The only difference between these two submodels
is that we further add a Sigmoid function at the end of the Q‐trainingmodel in order to keep its value, inter-
preted as the probability of being unquiet, between [0,1]. Though Q and I go through two separate pipelines,
they are not independent during the training. We introduce the loss function in section 2.2.2 that enables us
to consider Q and I jointly in the training.

We set the epoch number to be 20. Each model takes five to seven epochs, which costs 5 to 10 min, to con-
verge and around 20min to finish all the 20 epochs (on a 2.3‐GHz, i5, 16‐GBmachine that we use). Typically,

Figure 3. An example of how we define response variables based on the
recorded flares that happened with HARP 377. The lower panel is the
value of I given all flares, while the upper panel is the value of Q. Still, red,
green, and blue points represent M/X, C, and B flares, respectively. Notice
that there are missing values of I. The missing part is defined as the quiet
region where correspondingly Qs take a value of 0.
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during the first one to three epochs, the model learns the means of all response variables and assigns the
predicted intensities as the sample mean. Then, it takes a few epochs for the model to optimize over the
parameters. And in the next one to three epochs, the loss converges superlinearly. Figure 6 gives a typical
example of the variation of the loss function in the training process. We will give a detailed definition of
the loss function in section 2.2.2.

Specifically, we here reemphasize several strategies implemented to avoid overfitting issues. First, the drop-
out layers with dropout ratio equal to 0.3 are set between adjacent LSTM layers. Those dropout layers ran-
domly rule out 30% of the neurons from the preceding LSTM layers which have been proven to be an
efficient way to avoid overfitting (Srivastava et al., 2014b). Second, we apply early stopping with back propa-
gation strategy (Doan & Liong, 2004) by setting the epoch number to 20. Last andmost importantly, the sam-
ple size is over 60,000–37,784 quiet samples plus 22,928 nonquiet samples after the preprocessing pipeline
(section 2.1.2), which is enough for the model to learn the behavior of solar flares comprehensively.

Figure 4. A diagram of how we prepare samples for training the algorithm (see section 2.1.2). For each HARP, there is a “video” containing a time series of
magnetograms. For each frame, 20 SHARP parameters are calculated from the magnetic field components over the whole HARP. Therefore, we can obtain a
data matrix for each HARP with 20 columns and “the number of frames (magnetograms)” rows. Data in blue braces are the predictors. Green braces denote the
prediction intervals, and the response variables are decided based on the maximum flare intensities recorded in red braces. Samples are taken every 10 frames.
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2.2.2. Loss Function
In our mixed LSTM regression model, the response variables contain both
Boolean and continuous values. Therefore, we need to adopt a special
mixed approach to jointly evaluate the loss. In addition, for those samples
with Q = 0, there are no exact values of intensity recorded. We assign N/A
to those “missing” intensity values. The desired loss function should avoid
the usage of I for those samples with intensity values missing. We use bin-

ary cross‐entropy loss in terms of Q̂, which takes values between 0 and 1,

and the squared error loss for Î (Janocha & Czarnecki, 2017), which takes
values inR; see Table 5 for examples. Furthermore, we define three tuning
parameters to flexibly deal with the overabundance of the quiet samples
and the noncomparability between the loss for quiet score and that for
(logarithm) intensity values.

More precisely, the loss function for each batch is defined as

L¼ ∑
N

batch samples
r 1½ � −logð1 − Q̂ Þ − logðQ̂Þ0ðI−ÎÞ2� � 1ðQ¼ 0Þw1

1ðQ ≠ 0Þw2ðIÞ

" #

¼ ∑
N

batch samples
−1ðQ¼ 0Þw1rlogð1 − Q̂Þþ1ðQ ≠ 0Þw2ðIÞð−rlogQ̂ þ ðI−ÎÞ2Þ� �

;

where Q only takes values in the binary set {0,1}, I∈ [−7, −3]

are observed log‐intensity values, Q̂ ∈ ½0; 1� and Î ∈ R are fitted values,
1ðQ¼ 0Þ is the indicator function for Q = 0, and N is the sample size of

Figure 5. The flowchart of the LSTM regression model, discussed in section 2.2.1. In the figure, N is the number of samples in one batch, 5m is the number of
frames for each sample (see Figure 4 for details), and p is the number of features we take into consideration. h is the dimensionality of the LSTM layers and
the output space, and k is the number of frame(s) we keep after going through the LSTM layers.

Figure 6. An example showing the convergence behavior of the mixed
LSTM regression model. The x axis labels the epoch number, and the y
axis stands for the average loss across batches. From Epoch 1 to Epoch 2,
the average loss for each batch drops approximately from 75 to 12. In order
to also visualize clearly the superlinear change starting at Epoch 5 in one
figure, we cut the intermediate part of the loss change between Epochs 1
and 2.
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each batch. We take N = 40 in all our models (see section 2.2.1). The
tuning parameters w1, w2(·) and r are adopted to calibrate the weight
of each component in the loss function. Specifically, w1 is the weight
for loss generated by quiet samples, while w2(.) is a function set for non-
quiet samples returning weights given specific intensity, and r is the
weight for the loss generated by the Q dimension. Note that for the loss
function, only the relative values of w1,w2(·) and r matter—a loss
function can be defined up to a positive constant. Next, we explain the
different components in the design of this loss function.

For the loss generated by the Q dimension, since Q∈ {0,1} and I∈ [−7, −3], the scale of Q's loss is incompar-
able to I's loss. We multiply the Q dimension's loss by a scale parameter r for all samples in order to balance
the losses ofQ and I. In terms of loss of quiet samples, there are significantly more of them, 37,784, than non-
quiet samples (flare events), 22,928. We note that our main focus is on those nonquiet samples when
predicting local maximum flare intensities. Therefore, we multiply the loss of the quiet samples with weight
w1(<1) in order to attenuate the impact caused by the overabundance of quiet samples when training
our prediction models. The values of r and w1 are both tuned by the cross‐validation (Hastie et al., 2009,
chapter 7.10). Specifically, we consider r taking values in set {1, 2, 5, 10, 15} and w1 taking values in set
{0.1,0.2,0.5,1}. We randomly divide the training data set into 10 folds. For each possible pair of r and w1,
we train the model 10 times with nine folds as the training set and the remaining fold as the testing set.
Finally, we take the parameter values r = 5,w1 = 0.2, which results in the lowest average loss.

Now we consider the loss associated with the nonquiet samples (flare events). As we can see in Figure 2, C
flares dominate the data set while the samples for B andM/Xflares are comparativelymore limited.We adopt
the squared error loss for the prediction of flare intensities. If we simply weight all the input samples equally,
under the square loss setting, the consequence is that the predicted results will tend to cluster at the central
part (around −6 to −5.5 for logarithm intensity, corresponding to Cflares), which are the 30% and 70% quan-
tiles of the response variables, respectively, instead of the [ −7, −3] intensity range. This is inconsistent with
our original intention thatM/Xflares shall stand out fromotherflares asmuch as possible in themodel. Thus,
we add w2(·) (see equation (1)), which serves to balance the weights of samples from different classes, which
downweight the prevalent C flares essentially. We define the weight for the flare with intensity level I as

w2ðIÞ ¼ jI − μj × constant: (1)

Next, we explain our rationale for choosing this particular set of weights. We fit the empirical distribution of
the logarithm of the flare intensity of the full data set to a Cauchy distribution, which is a heavy‐tailed dis-
tribution, with location parameter μ = −5.84 and scale parameter γ = 0.31. The fitted curve is shown in
Figure 2. The weight is set to be the L1 distance from μmultiplied by a constant specified based on the pro-
portion of the quiet samples. By doing so, we maintain the balance of samples of M/X, C, and B classes.
Equation (2) gives the detailed probability mass corresponding to each flare class under the weighting
scheme given by equation (1):

B flares: ∫
−6

−7jx − μj · f ðxÞdx ¼ 0:121

C flares: ∫
−5

−6jx − μj · f ðxÞdx ¼ 0:116

M=X flares: ∫
−3

−5jx − μj · f ðxÞdx ¼ 0:114

8>>><
>>>:

; (2)

where a Cauchy distribution with location parameter μ and scale parameter γ has probability density func-

tion denoted by f ðxÞ ¼ πγð1þ ðx−μÞ
γ Þ2

� �h i−1
.

With this strategy, we can combine the quiet and nonquiet samples in one model and train them simulta-
neously. Again, the loss function L is defined over each batch with N samples therein. Therefore, we can
obtain the “number of batch” of losses for each epoch. The loss we evaluate and visualize in Figure 6 is
the average loss of all batches over each epoch. The results calculated based on the loss functionLare shown
in section 3.1.

Table 5
We Use Binary Cross‐Entropy Loss in Terms of Q̂ and L2 Loss for Î

Loss Quiet sample Nonquiet sample

Q
−logð1 − Q̂) −logðQ̂Þ

I N/A
ðI−ÎÞ2

10.1029/2020SW002440Space Weather

JIAO ET AL. 9 of 22

 15427390, 2020, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020SW

002440, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.3. Extension to Classification Models

In this section, we introduce binary classification models that are built upon the mixed LSTM regression
model in section 2.2. The binary classification models are designed for classifications of M/X versus B,
M/X versus B/Q, and M/X versus C/B/Q.

For M/X versus B, that is, strong/weak flare classification, we only consider training samples that have flare
intensities ranging from [−7, −6)∪[−5, −3). Borrowing the idea from transfer learning in Yosinski et al.

(2014), we make use of the output given by the mixed LSTM regressionmodel, Î, to decide an optimal thresh-
old between M/X and B flares.

Since we know the observed intensity, I, of all training samples, for each potential threshold (thre∈ (−6,

−5]) for Î , we can construct a confusion matrix, where true positives TP = ∑1ðÎ i ≥ thre; Ii ≥ −5:5Þ, false
positives FP = ∑1ðÎ i ≥ thre; Ii<−5:5Þ, false negatives FN = ∑1ðÎ i<thre; Ii ≥ −5:5Þ, and true negatives

TN = ∑1ðÎ i<thre; Ii<−5:5Þ, where each term is summed over all available training samples. Then we can
calculate the HSS2 score correspondingly (see Bobra & Couvidat, 2015 for the definition of HSS2). Again, 1
ð · Þ is an indicator function. Note that, in this case, I only takes values in [−7, −6)∪[−5, −3). Any number
between −6 and −5 could act as the threshold for observed intensity, I. We hereby take the value of −5.5.

Next, we apply the trisection method (Gu et al., 2006) to find the threshold that yields the highest HSS2. For
each iteration, we obtain a threlo and a threup by trisecting the current range of threshold. By constructing
confusion matrixes respectively, we compare the HSS2 score, choose the one with the higher score, and
define new threlo and threup. Throughout the iterations, the range of possible thresholds keeps getting smal-

ler, and finally, we reach an optimal threshold for Î . The flowchart of the algorithm is in Figure 7.

The M/X versus B/Q classification model adopts the same strategy as the M/X versus B classification model
does on determining the threshold between M/X and B/Q. Different from the M/X versus B/Q and M/X

Figure 7. The flowchart of M/X versus B classification, discussed in section 2.3. After inputting all training samples with class M/X and B into the trained LSTM
model, we use the output Î together with I to decide an optimal threshold between M/X and B with trisection method. The loop time is set to 5.
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versus Bmodels, the M/X versus C/B/Q classificationmodel no longer has the sweet [ −6, −5) buffering area
for us to train a threshold. Once we include C flares in the model, the threshold is fixed at −5.

We use the following six metrics to evaluate all our binary classifiers: recall, precision, the F1 score, the
Heidke skill scores (HSS1 and HSS2) (see Bobra & Couvidat, 2015 for the definition of HSS1 and HSS2),
and the true skill statistics (TSS), among which HSS2 and TSS are our main focuses. Specifically, recall
and precision are two standard metrics evaluating the quality of a prediction. The F1 score is the harmonic
mean of recall and precision. However, these three scores can be rather unstable when encountering unba-
lanced samples, which is true in our case where the B/C flares outnumber the M/X flares. We consider TSS
and HSS2 as two reasonable measures of classification performance for solar flares. TSS is invariant to the
frequency of samples, unlike recall or precision. HSS2 measures the fractional improvement of the forecast
over the random forecast. There are detailed descriptions of HSS1, HSS2, and TSS in Florios et al. (2018).
Bloomfield et al. (2012) give conceptual comparison and discussion on the suitability of these metrics when
predicting solar flares. A summary of the binary classification results is shown in section 3.2.

2.4. Test Samples Preparation

In this paper, we adopt the following strategy for preparing the testing samples to give a fair evaluation of the
performance of our algorithms. Recall that each sample is a time series of SHARP parameters and corre-
sponds to a two‐dimensional response variable [Q, I].

First, we take all the samples from the full data set after 2015 (see how we get full data set and do
training/testing splitting in section 2.1). For each sample with corresponding response variable Q = 1 (non-
quiet samples), there should be at least one flare happening in the 24‐hr time window and the maximum
intensity of all the applicable flares should be equal to I. For samples with overlapping predictors and the cor-
responding response variables belonging to the same flare class, we keep one of them at random to avoid
repeated predictors—response variable pairs in the testing set. Quiet samples are collected with the same
strategy. Section 3 andAppendices A, B, andC give results for using testing samples obtained via this strategy.

3. Results

In this section, we present results in sections 3.1,3.2, and 3.3 based on the models described in section 2. In
section 3.4, we illustrate that under the LSTM architecture, the most efficient time range for predicting the

Figure 8. Line chart showing the MSEs of all mixed LSTM regression models, shown in section 3.1. Again, m is the
number of hours of data we use before the current time point, [−m,0] is the input window, and [n, n + 24] is the
prediction window. Each point with a vertical line is the average MSE and its 95% confidence interval of 10 regression
models with the same [−m,0] − [n, n + 24] trained separately. Each line shows the variation of MSE for models with the
same prediction window and different lengths of input windows. The solid lines represent the MSEs of all nonquiet
testing samples (M/X/C/B). The dashed lines represent the MSEs of those testing samples with M/X flare intensities.
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solar activity using the SHARP parameters is within 24 hr before the prediction time. Finally, case studies of
intensity prediction with several representative HARPs are given in section 3.5.

With the current time point specified as time 0, we denote a model as “[−m,0] − [ n,n+ 24]” if it uses data in
time range [−m,0] to predict maximum local flare intensities within the [n,n + 24] time window (n,m≥ 0).
We define the [n,n + 24] time window as prediction window and [−m,0] time window as input window. For
example, if we want to use the past 6 hr of data to predict the maximum local flare intensity in the 24‐hr win-
dow [0,24], the model is denoted as [−6,0] − [0,24]. The prediction window is [0,24] and the input window is
[−6,0] in this case. Similarly, if we want to use the past 12 hr of data to predict the maximum local flare inten-
sity in the next [12,36] hours, the model should be denoted as [−12,0] − [12,36]. The prediction window is
[12,36] and the input window is [−12,0].

To allow fair comparisons across models, models with the same prediction window but different input
windows are applied to the same group of samples. Consider a series of models [−6,0] − [0,24], [−12,0] −
[0,24], [−24,0] − [0,24] as an example. Their samples are all filtered based on the standard for model
[−24,0] − [0,24] (see section 2.1.2 for details on sample preparation). Therefore, for each sample, we have
24‐hr length of SHARP parameters as the predictors, while we only use the last 6 and 12 hr of predictors
for models [−6,0] − [0,24] and [−12,0] − [0,24].

3.1. The MSEs From the Mixed LSTM Regression Model

In this section, we present the MSEs of predicted log10 flare intensities from all models in the of line charts.
The complete MSE tables for all models and all classes of flares can be found in Appendix A.

Figure 8 is a line chart showing the MSEs for models with the same prediction window as the length of input
window (m) increases (solid lines). The chart also includes the MSEs of the samples with M/X flares (dashed
lines). As the prediction window gets farther away from the current time point (n increases), the MSE of all
flare samples does not change too much. However, this is not true when we look at MSE calculated from
M/X flares only. This shows the sensitivity of the evaluation metric, MSE, with respect to the samples that
we use to calculate with. Therefore, the MSE of M/X flares can be considered as another metric for evaluat-
ing the performance of the regression models.

Intuitively, the smaller the n, that is, the closer the prediction window from the current time point, the smal-
ler the MSE will be. This is confirmed in Figure 8. Generally, from the results, the MSE is kept under 0.3
when the prediction window is [0,24], [6,30], or [12,36]. We can keep the MSE of M/X flares under 0.5 when
n = 0, that is, prediction window is [0,24]. We also observe that there is a sudden increase in terms of the

Figure 9. Line chart showing the HSS2 scores of all classification models, covered in section 3.2. Similar to Figure 8, each
point with a vertical line is the average HSS2 and its 95% confidence interval of 10 classification models with same
[−m,0] −[n, n + 24] trained separately. Each line shows the variation of HSS2 for models with the same prediction
window and different lengths of input windows. The solid lines represent the HSS2s of M/X versus B models. The dashed
lines represent the HSS2 scores of M/X versus C/B/Q models.
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MSE of M/X flares when the prediction window is shifted from [6,30] to [12,36] and [24,48]. However, we do
not observe any significant patterns of the MSE varying monotonically as a function of m, the length of the
time series that we use for prediction. We elaborate discussions on these results in section 3.4.

3.2. Performance of the Classification Models

We use the HSS2 score to compare the performances of M/X versus B and M/X versus C/B/Q classifiers.
Results in other metrics mentioned in section 2.3 are shown in Appendix B. In addition, since M/X versus
B/Q models give us similar HSS2 scores as M/X versus B models do, we also put results of M/X versus
B/Q models in Appendix B.

The HSS2 score results are also shown in the form of a line chart in Figure 9. There is a large gap between all
M/X versus B models and all M/X versus C/B/Q models. As mentioned in section 2.3, we have an intensity
interval, [−6, −5) (for C flares) where there is no flare defined as M/X or B. This is mainly why we can get
incredibly high scores (HSS2 > 0.8 when the prediction window is [0,24] or [6,30], HSS2 > 0.7 when all mod-
els) for M/X versus B. As for the M/X versus C/B/Q model, we can hardly get HSS2 scores greater than 0.5.
Wemanage to classify roughly half of the M and X flares out of other flares when prediction window is [0,24]
(see Appendix B). Almost all of the misclassified M and X flares have predicted intensities falling into C
flares' intensity range (see Figure 13). We do not observe an obvious HSS2 score difference between models
with prediction window [0,24] and [6,30]. But when the prediction window is shifted from [6,30] to [12,36]
and [24,48], there is a large decrease in terms of the HSS2 score.

3.3. Results of Quiet Samples From the Mixed LSTM Regression Model

In sections 3.1 and 3.2, we only summarize the prediction results of nonquiet samples, that is, samples with
response variables Q = 1. In this section, we will particularly focus on the performance of all the models in
terms of the quiet samples, that is, samples with response variables Q = 0.

First, we examine the fitted distribution of the predicted intensity (Î) of the quiet samples in Figure 13. This is

an example of a [−6,0] – [0,24] model. We observe that almost all of the quiet samples have Î<−5 in the test-
ing set, which indicates that the false alarm (false positive rate) of quiet samples can be restrained signifi-
cantly in our models. Next, we formally evaluate the performance of the prediction. Note that we don't
have the exact observed intensity (I = N/A) for quiet samples (see examples of how we define response vari-

ables in Table 4). Therefore, we consider the prediction result (½Q̂; Î �) as successful if it meets either of the

following two requirements: (1) the predicted intensity Î<k and (2) predicted quiet score Q̂<0:5 .

Figure 10. Line chart showing the classification accuracy of quiet samples in all models, covered in section 3.1. Each point
with a vertical line is the average accuracy and its 95% confidence interval of 10 models with same [−m,0] − [n,n + 24]
trained separately. Each line shows the variation of the accuracy for models with same prediction window and different
lengths of input windows. The solid lines represent the accuracy when the evaluationmetric is Q̂< 0:5or Î < 6. The dashed

lines represent the accuracy when the evaluation metric is Q̂<0:5 or Î <5.
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Specifically, k takes the values of −5 and −6, where k = −5 evaluates the rate of falsely predicting a quiet
sample as intensive flare (M and X flare) while k = −6 evaluates the rate of falsely predicting a quiet sample
as M, X, or C flare. We denote k = −5 as Metric 1 and k = −6 as Metric 2.

Figure 10 shows the summarized result of the quiet sample prediction, where the solid line corresponds to
Metric 1 and the dashed line to Metric 2 (the summary table can be seen in Appendix C). We obtain an accu-
racy of over 98.5% for all models in terms of Metric 1 and over 80% in terms of Metric 2. Recall that “ −5” is

the cutoff of the logarithm of flare intensity for B and C flares; thus, as long as we don't give a Î > −5which is
an alarm of intense flare, we can consider the prediction satisfying. Therefore, we conclude that our regres-
sion models have an excellent performance on restraining false alarms.

3.4. Post Hoc Analysis

In this section, we show visualizations of the prediction results, combined with the regression and classifica-
tion results shown in sections 3.1,3.2, and 3.3, to investigate in‐depth how the information in the data (time
series of SHARP parameters) convey for solar flare predictions under the LSTM architecture.

Figures 11 and 12 show the predicted intensity against the observed intensity with each point representing a
flare event. Each color in the figures represents one class of solar flare. Purple stands for X flare, blue for M,
aqua for C, and green for B. Specifically, except that Figure 11b is plotted based on the training samples, all
other subpanels in Figures 11 and 12 are plotted based on testing samples corresponding to five models with
different prediction windows and input windows. Figure 11b exhibits the best performance over all figures,
since it is based on a training set. We cannot expect to achieve this high accuracy when applying models to
the testing set.

Figure 13 shows the fitted Gaussian distribution of each class's predicted intensity. The left panel is the fitted
Gaussian distribution for training samples, and the right panel is for testing samples. Each color represents
one class of flares. It can be seen that the different classes of flares, especially neighboring ones, have over-
lapping predicted intensity values. Nevertheless, the strong flares and weak flares (or quiet time) are still
highly distinctive.

Not surprisingly, the farther the prediction window from the current time point, the worse the prediction
results. This is also intuitive: Predicting what happens after 1 hr is easier than predicting what happens

Figure 11. Predicted intensities versus true intensities. Each point represents a recorded flare. Purple stands for X flare, blue for M, aqua for C, and green for B.
For both panels (a) and (b), the x axis is the observed intensity, and y axis is the predicted intensity. The thick gray dashed line y = x shows the ideal positions
where every point should locate when being accurately predicted.
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after 10 hr. Another finding is that considering more data backwards (greater m) does not necessarily
guarantee a better prediction result. The explanation is twofold.

First, we speculate that the most useful information for predicting the behavior of the prediction window
is within 24 hr beforehand. Here 24 denotes the hours from the center of the prediction window to now.
Once n+ 12≥ 24 (12 is half of the prediction window's length), considering more information does not help
much based on our results. Notice that, even though the TSS andHSS2 scores decrease as the n increases, they
always experience a sharp drop when the prediction windows move farther away from [6,30] to [12,36]; that
is, n increases from 6 to 12 in all models. Recall that k in Figure 5 is the number of frame(s) we kept after going
through LSTM layers, and we take k = 1 for all our models. Therefore, we are essentially using the output
information of the last frame (n hours from the prediction window) to predict the behavior in the

Figure 12. (a–d) Visualizations for four example models. The figures share the same setting as Figure 11. Note that, in both Figures 12 and 13, there is no X flare
plotted. Recall that we define the prediction window as [n,n+24]. Generally, there are no applicable X flares in testing set for n > 0. We have very few X flares.
Most of them happened before 2015. For the limited X flares that happened after 2015, they either have many frames missing before it happened or happened only
a few hours after the video starting. So we don't have X flares in testing set for models with prediction windows farther away from the current time point.
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Figure 13. Fitted distribution of predicted intensities based on one [−6,0] − [0,24] model. The distribution is fitted using Gaussian kernel with bandwidth = 0.15.
The x axis plots the values taken by predicted intensities, and the y axis stands for the density of fitted distribution. Ideally, flares with class B, C, or M should
follow an asymptotically normal distribution. The predicted distribution (a) for training data is close to the ideal setting, while for the testing set (b), the predicted
intensities are still having a hard time separating themselves from other flares.

Figure 14. (a–d) Case studies: successful cases. For each plot, the blue curve on the upper panel is the predicted Q̂ score. The gray dashed line taking the value of
0.5 is the threshold of dividing quiet and nonquiet times. The blue curve on the lower panel is the predicted real‐time flare intensity, Î. There is no time shift on
each plot. Each red, green, or blue round point corresponds to one recorded M/X, C, or B flare, respectively. Unlike in Figure 1, the height of each point is exactly
the log10 intensity of the flare it represents.
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prediction window. A worse result indicates that the last frame is less relevant to the prediction window or it
is harder for LSTM to build a relationship between the predictionwindow and the last frame. Thus, the sharp
drop when the prediction window shifts from [6,30] to [12,36] indicates that the solar activities within the
24‐hr window prior to the events have a significant influence on the behavior in the prediction window.

Second, even though the most useful information for prediction is within 24 hr before the events, consider-
ing more information offering us worse result is still counterintuitive. This is due to the limitations of the
LSTM model. The LSTM is an artificial recurrent neural network (RNN) architecture used for digging out
the temporal properties within time‐series data. The parameter matrices for each gate remain unchanged
for all input time series. Therefore, the LSTM considers the entire time evolution process in a homogeneous
way. If the whole time series before the event is not acting homogeneously, adding information 24 hr before
can, on the contrary, impair the performance of the prediction.

3.5. Case Study

In the case study section, we focus on themodel performances onM and X flares' predictions for two reasons.
First, M and X flares are of primary concern in the flare prediction problem. Second, as shown in Figure 8,
the model can already offer us a decent prediction, that is, a relatively small MSE, for B and C flares. Besides,
Figure 13 shows that, for both the training and testing sets, quiet samples' predicted intensities are restricted
below −5. Hence, M and X flares are not only the most important but also the most difficult flares to predict,
that is, generating the highest MSE.

Figures 14 and 15 show six prediction plots, including four well and two badly performed examples, each of
which corresponds to one HARP and one model. The four well‐performed examples in Figure 14 are chosen
where at least one of their M and X flares lays near the y = x diagonal line in Figures 12a and 12b. For the two
badly performed cases in Figure 15, we choose two videos where one of their M or X flares has the largest

prediction error ( jI − Î j ) among all M and X flares in the training set and testing set, respectively, in a
[−24,0] − [0,24] model.

A successful case should have the blue curve in the lower panel of each plot locating as close as possible
to the local maximum flare, that is, the local highest round point. Note that the existence of dimension Q

in the response variable is only to compensate for the nonobservable flares. Thus, the quiet score Q̂ in the
upper panel is more than a signal instead of an exact prediction result. As long as the lower panel offers a

Î ≤ −6, we can still consider the model as having a good prediction of the quiet time.

The two cases shown in Figure 15 represent two typical situations where M and X are wrongly predicted.
(1) The model does perceive the increase in flare intensity but not precisely, like in Figure 15a. Predicted
intensity may have increased hours before or after the intensive flares' happening. (2) The model fails to
detect the intense flares totally, like in Figure 15b. However, this scenario only happens when certain
M/X flares lay at the head or tail of the video. Moreover, videos also tend to have a few frames missing at

Figure 15. (a,b) Case studies: failed cases. Same setting as Figure 14. In addition, the red vertical dashed line is to indicate the largest prediction error.
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the beginning and the end. Thus, we speculate that it is the potential problem of the missing frames and the
mismatch of HARP and active regions (see section 2.1.1 for details) rather than the model that restricts the
performance of the prediction. We also note that there are manymissing B and C flares in the GOES data set,
which might reduce precision of the response variable, leading to biased prediction results.

4. Summary and Discussion

In this paper, we presented a pipeline to prepare and analyze data from the SHARP parameters and GOES
data set. Amixed LSTM regressionmodel was introduced and applied, and we shared encouraging results on
solar flare intensity prediction and classification. The work in this article can be considered as one further
step from the papers discussing flare classification, including Chen et al. (2019) and Liu et al. (2019).

We refer models in this paper as modelA and models in the above two papers as modelB. Generally, modelA
differ frommodelB in several aspects (a direct comparison on the breadth of usage between models is shown
in Figure 16).

• ModelA consider the intensity of each flare as a continuous variable on the log10 scale, ranging from [−7,
−3], instead of a single label, defined as a binary (strong and weak) or multiclass (≥M5.0, ≥M, and ≥C
class) label. Therefore, modelA could predict both the intensity and the class of the flare as opposed to
only predicting flare class in modelB. ModelA are regression models, whereas modelB are classification
models. For example, we consider two flares with intensity level M1.0 and C9.9. These two flares are
similar in the regression model since their log10 intensities are close to each other but are totally different
in classification model since the former is an M‐class flare and the latter is a C‐class flare.

• In modelA, we assign each frame the maximum flare intensity of flares happened within a 24‐hr time win-
dow (12 hr before and 12 hr after). By doing so, modelA can assign every frame a flare intensity, including
the frames where there is no flare happening.

• In our notation, a time point (one frame) with no flare happening includes two cases: (1) There exists at
least one flare within the 24‐hr window but not at the exact time and (2) there is no flare within the 24‐hr
window. We consider the latter frames as quiet regions and the former together with frames with flare

Figure 16. A direct comparison between models introduced in this paper and models used in Chen et al. (2019) and Liu
et al. (2019). Mixed LSTMmodels can accept any kind of sample inputs and give a more informative prediction including
the quietness (quiet or unquiet), flare intensity, and flare class within a 24‐hr window. As a contrast, the models in Chen
et al. (2019) and Liu et al. (2019) can only give classification results.
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happening as unquiet regions. Hence, modelA can predict the quietness of a 24‐hr window, instead of pre-
suming there is flare happening at the prediction time point and classifying flare labels like modelB do.

• The extended classification model in modelA is only a by‐product of the regression model. The way we get
the classification relies on the predicted numerical flare intensity values and the trained thresholds. This
is also different from the classification methods in modelB.

Specifically, compared to our previous results in Chen et al. (2019), the models presented in this paper stand
out in several aspects.

• The prediction score, TSS and HSS2 of M/X versus B, is increased by 0.1 when the prediction window
is [0,24].

• We consider more cases, including [ −6,0] − [0,24], [−12,0] − [0,24], [ −24,0] − [0,24]; [−6,0] −
[6,30], [−12,0] − [6,30], [−24,0] − [6,30]; [−6,0] − [12,36], [ −12,0] − [12,36], [ −24,0] −[12,36], [−48,0]
− [12,36]; [− 6,0] − [24,48], [−12,0] − [24,48], [−24,0] − [24,48], [− 48,0] − [24,48], and prepare the data
to offer fair comparison with same prediction windows.

There are several promising areas for future work. First, as we mentioned at the beginning of section 2.1.1,
there exists a potential mismatch of the SHARPs and GOES data, which may cause bias for prediction mod-
els. We plan to address this problem in future work using flare location data. Second, the Sun's activity level
experiences an 11‐year cycle, where the 24th cycle began in December 2008 (Space Weather Prediction
Center, 2019). The boundary between the training and testing sets in this paper are set at year 2015.
Flares events that happened after 2015 are not exactly equivalent or comparable to flares before 2015. It
would be worthwhile to explore other splits of the data sets into training and testing subsets. Third, in our
models, we consider videos of different HARPs equally, which is certainly not the case due to the intrinsic
variability among different HARPs. Moreover, there is a latent dependency among flares in the same
HARP, which are not modeled in our LSTM approach. Lastly, as mentioned in section 3.5, our results are
limited by its sole dependency on the SHARP parameters, which may or may not fully capture the informa-
tion of the magnetic field. In the future, we plan to directly work with the HMI magnetograms for real‐time
prediction of flares.

Appendix A: MSE Table for Mixed LSTM Regression
In this table (Table A1) and all the following tables in the appendix, we denote the [ −m,0] −[n,n+24] model
as (n+ 12) −m for simplicity. For example, [−12,0] − [0,24] is 12‐12 and [−24,0] − [24,48] is 36‐24. Note that
the values given in the table are based on log10 scale of flare intensity values.

Appendix B: Tables of Classification Results
The following six tables provide the summary results of all classification models, including M/X versus B
(Tables B1 and B4), M/X versus B/Q (Tables B2 and B5), and M/X versus C/B/Q (Tables B3 and B6).
Specifically, Tables B4–B6 provide the raw confusion matrices we obtained from experiments, while the
summaries of different metrics in Tables B1–B3 are calculated based on them.

Table A1
Mixed LSTM Regression Results of All Flares and M/X, B and C Flares Measured in MSE

Num of hours before Event‐Num of hours of data used

Class 12‐06 12‐12 12‐24 24‐12 24‐24 24‐48 36‐06 36‐24
Average 0.25 0.25 0.24 0.25 0.27 0.28 0.29 0.30
M/X 0.44 0.46 0.48 0.61 0.63 0.69 0.72 0.71
C 0.19 0.20 0.19 0.14 0.19 0.16 0.15 0.15
B 0.25 0.23 0.22 0.29 0.25 0.27 0.26 0.28
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Table B2
M/X Versus B/Q Flare Classification Results (Calculated Based On Table B5)

Num of hours before Event‐Num of hours of data used

Metrics 12‐06 12‐12 12‐24 24‐12 24‐24 24‐48 36‐06 36‐24
Recall 0.91 0.89 0.90 0.79 0.80 0.80 0.74 0.74
Precision 0.64 0.66 0.66 0.72 0.71 0.68 0.68 0.66
F1 score 0.75 0.75 0.76 0.75 0.75 0.73 0.70 0.69
HSS1 0.39 0.42 0.43 0.48 0.46 0.39 0.34 0.31
HSS2 0.73 0.74 0.74 0.73 0.72 0.70 0.67 0.66
TSS 0.88 0.86 0.87 0.76 0.77 0.76 0.70 0.70

Table B3
M/X Versus C/B/Q Flare Classification Results (Calculated Based On Table B6)

Num of hours before Event‐Num of hours of data used

Metrics 12‐06 12‐12 12‐24 24‐12 4‐24 24‐48 36‐06 36‐24
Recall 0.54 0.49 0.45 0.35 0.34 0.32 0.29 0.32
Precision 0.45 0.47 0.47 0.54 0.52 0.53 0.55 0.56
F1 Score 0.49 0.48 0.46 0.42 0.41 0.40 0.38 0.40
HSS1 −0.11 −0.06 −0.05 0.05 0.02 0.03 0.06 0.07
HSS2 0.47 0.45 0.44 0.39 0.38 0.37 0.35 0.37
TSS 0.51 0.46 0.43 0.33 0.32 0.30 0.28 0.30

Table B1
M/X Versus B Flare Classification Results (Calculated Based On Table B4)

Num of hours before Event‐Num of hours of data used

Metrics 12–06 12–12 12–24 24–12 24–24 24–48 36–06 36–24
Recall 0.89 0.89 0.91 0.80 0.80 0.80 0.74 0.74
Precision 0.92 0.92 0.93 0.89 0.92 0.91 0.94 0.94
F1 score 0.91 0.91 0.92 0.85 0.85 0.85 0.82 0.82
HSS1 0.82 0.81 0.84 0.71 0.72 0.72 0.68 0.69
HSS2 0.86 0.86 0.88 0.75 0.78 0.76 0.71 0.71
TSS 0.85 0.85 0.88 0.74 0.76 0.75 0.69 0.70

Table B4
M/X Versus B Confusion Matrices

Confusion matrix (mean [min, max])

Model TP FN FP TN
12‐06 86.2 [83,88] 8.8 [7,12] 7.3 [1,14] 176.7 [170,183]
12‐12 84.2 [80,88] 10.8 [7,15] 6.8 [3,10] 177.2 [174,181]
12‐24 85.4 [79,88] 9.6 [7,16] 6.4 [4,8] 177.6 [176,180]
18‐06 79.5 [74,86] 10.5 [4,16] 7.9 [3,19] 156.1 [145,161]
18‐12 79.2 [76,84] 10.8 [6,14] 5.4 [1,12] 158.6 [152,163]
18‐24 81.1 [75,88] 8.9 [2,15] 7.9 [1,35] 156.1 [129,163]
24‐06 71.7 [66,78] 17.3 [11,23] 4.3 [2,7] 158.7 [156,161]
24‐12 70.3 [63,76] 18.7 [13,26] 5.2 [1,9] 157.8 [154,162]
24‐24 71.0 [66,76] 18.0 [12,23] 6.8 [3,12] 156.2 [151,160]
24‐48 64.4 [60,71] 16.6 [10,21] 6.4 [3,12] 113.6 [108,117]
36‐06 57.5 [49,63] 20.5 [15,29] 4.1 [2,9] 89.9 [85,92]
36‐12 59.9 [53,67] 18.1 [11,25] 6.8 [2,17] 87.2 [77,92]
36‐24 57.6 [53,63] 20.4 [15,25] 4.1 [2,15] 89.9 [79,92]
36‐48 59.4 [49,65] 18.6 [13,29] 6.1 [2,14] 87.9 [80,92]
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Appendix C: Summary of Accuracy of Quiet Sample Prediction
Table C1 summarizes the classification results of quiet samples measured in two metrics. The definition of
these two metrics are illustrated in section 3.3.

Table B5
M/X Versus B/Q Confusion Matrices

Confusion matrix (mean [min, max])

Model TP FN FP TN
12‐06 86.2 [83,88] 8.8 [7,12] 49.0 [29,73] 1,606.0 [1582,1626]
12‐12 84.2 [80,88] 10.8 [7,15] 44.3 [33,55] 1,610.7 [1600,1622]
12‐24 85.4 [79,88] 9.6 [7,16] 44.6 [35,57] 1,610.4 [1598,1620]
18‐06 79.5 [74,86] 10.5 [4,16] 63.4 [23,113] 1,571.6 [1522,1612]
18‐12 79.2 [76,84] 10.8 [6,14] 51.3 [27,78] 1,583.7 [1557,1608]
18‐24 81.1 [75,88] 8.9 [2,15] 59.0 [21,167] 1,576.0 [1468,1614]
24‐06 71.7 [66,78] 17.3 [11,23] 25.6 [18,33] 915.4 [908,923]
24‐12 70.3 [63,76] 18.7 [13,26] 27.8 [14,40] 913.2 [901,927]
24‐24 71.0 [66,76] 18.0 [12,23] 29.8 [20,40] 911.2 [901,921]
24‐48 64.4 [60,71] 16.6 [10,21] 32.7 [17,57] 865.3 [841,881]
36‐06 57.5 [49,63] 20.5 [15,29] 31.1 [8,80] 840.9 [792,864]
36‐12 59.9 [53,67] 18.1 [11,25] 43.0 [19,99] 829.0 [773,853]
36‐24 57.6 [53,63] 20.4 [15,25] 33.8 [13,100] 838.2 [772,859]
36‐48 59.4 [49,65] 18.6 [13,29] 39.8 [21,78] 832.2 [794,851]

Table B6
M/X Versus C/B/Q Confusion Matrices

Confusion matrix (mean [min, max])

Model TP FN FP TN
12‐06 49.8 [40,57] 45.2 [38,55] 54.7 [37,67] 1,998.3 [1986,2016]
12‐12 47.1 [38,58] 47.9 [37,57] 53.5 [42,79] 1,999.5 [1974,2011]
12‐24 41.6 [32,54] 53.4 [41,63] 44.7 [31,64] 2,008.3 [1989,2022]
18‐06 36.6 [24,51] 53.4 [39,66] 35.5 [24,54] 1,856.3 [1838,1868]
18‐12 37.3 [29,43] 52.7 [47,61] 31.7 [18,42] 1,860.3 [1850,1874]
18‐24 35.0 [26,46] 55.0 [44,64] 29.2 [16,41] 1,862.8 [1851,1876]
24‐06 32.2 [27,40] 48.8 [41,54] 30.7 [20,38] 1,137.3 [1130,1148]
24‐12 29.4 [24,35] 51.6 [46,57] 26.1 [17,33] 1,141.9 [1135,1151]
24‐24 28.8 [19,39] 52.2 [42,62] 27.7 [20,33] 1,140.3 [1135,1148]
24‐48 28.0 [22,38] 53 [43,59] 25.1 [12,32] 1,142.9 [1136,1156]
36‐06 23.6 [12,33] 54.4 [45,66] 17.0 [10,22] 1,025.0 [1020,1032]
36‐12 26.9 [13,36] 51.1 [42,65] 19.9 [7,33] 1,022.1 [1009,1035]
36‐24 25.2 [19,29] 52.8 [49,59] 21.5 [14,40] 1,020.5 [1002,1028]
36‐48 25.1 [9,35] 52.9 [43,69] 15.9 [9,28] 1,026.1 [1014,1033]

Table C1
Classification Results of Quiet Samples Measured in Accuracy

Accuracy (mean [min, max] in %) Accuracy

Model Metric 1 Metric 2 Model Metric 1 Metric 2
12‐06 99.4 [98.9,99.8] 89.0 [83.5,92.3] 24‐12 99.6 [99.4,99.9] 88.2 [85.5,91.3]
12‐12 99.4 [98.9,99.8] 89.1 [86.0,91.6] 24‐24 99.5 [99.4,99.9] 87.6 [82.9,91.9]
12‐24 99.6 [99.2,99.9] 88.9 [82.9,92.4] 24‐48 99.5 [99.2,99.7] 86.8 [83.4,92.5]
18‐06 99.1 [98.7,99.5] 87.4 [83.8,91.7] 36‐06 99.6 [99.1,100] 88.6 [84.8,91.9]
18‐12 99.3 [99.0,99.7] 88.6 [86.9,90.1] 36‐12 99.4 [98.5,99.9] 87.5 [82.9,92.5]
18‐24 99.4 [99.0,99.7] 88.8 [85.7,92.7] 36‐24 99.3 [98.2,99.7] 84.1 [74.2,90.9]
24‐06 99.3 [99.1,99.9] 86.6 [77.8,90.7] 36‐48 99.5 [99.0,99.9] 87.6 [84.1,89.6]
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Data Availability Statement

All SHARP data used in this study are available from the Joint Science Operations Center (JSOC) NASA
grant; see https://jsoc.stanford.edu/. All relevant digital values used in themanuscript (both data andmodel)
will be permanently archived at the U‐M Library Deep Blue data repository, which is specifically designed
for U‐M researchers to share their research data and to ensure its long‐term viability. To cite these data,
please use the following format: Jiao, Z., Chen, Y., Manchester, W. (2020). Data for solar flare intensity pre-
diction with machine learning models [data set]. University of Michigan—Deep Blue. https://doi.org/
10.7302/b07j-bj08.
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