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Abstract

Tensor data, or multi-dimensional array, is a data format popular in multiple fields
such as social network analysis, recommender systems, and brain imaging. It is not
uncommon to observe tensor data containing missing values and tensor completion
aims at estimating the missing values given the partially observed tensor. Sufficient
efforts have been spared on devising scalable tensor completion algorithms but few on
quantifying the uncertainty of the estimator. In this paper, we nest the uncertainty
quantification (UQ) of tensor completion under a split conformal prediction frame-
work and establish the connection of the UQ problem to a problem of estimating the
missing propensity of each tensor entry. We model the data missingness of the tensor
with a tensor Ising model parameterized by a low-rank tensor parameter. We propose
to estimate the tensor parameter by maximum pseudo-likelihood estimation (MPLE)
with a Riemannian gradient descent algorithm. Extensive simulation studies have
been conducted to justify the validity of the resulting conformal interval. We apply
our method to the regional total electron content (TEC) reconstruction problem.
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1 Introduction

Tensor, or multi-dimensional array, has become a popular data format in several applica-

tions such as collaborative filtering (Bi et al. 2018), financial time series modeling (Li &

Xiao 2021), hypergraph networks analysis (Ke et al. 2019), neuroimaging study (Li et al.

2018) and astrophysics imaging analysis (Sun, Manchester, Jin, Liu & Chen 2023). Tensor

gains this popularity due to its efficient representation of structural high-dimensional data.

For example, in collaborative filtering (Bi et al. 2018), the rating data is naturally embed-

ded in a 3-way tensor with user×item×context with each entry being the rating by a user

on a certain item under a specific context. In neuroimaging analysis (Wei et al. 2023), as

another example, each brain voxel in the 3-way tensor is identified by its coordinate in the

3-D Euclidean space.

Tensor completion (Yuan & Zhang 2016, Xia et al. 2021, Cai, Li, Poor & Chen 2022)

is a technique that provides an estimator of the tensor when missing values are present.

Typically, given only one tensor sample with missingness, tensor completion aims at find-

ing a low-rank tensor that best imputes the missing entries. Various optimization tech-

niques (Kressner et al. 2014, Yuan & Zhang 2016, Lee & Wang 2020, Cai, Li, Poor &

Chen 2022) have been proposed for computationally efficient tensor completion and the

statistical error of tensor completion has also been carefully investigated (Xia et al. 2021).

However, given the progress above, very little work has been done on the uncertainty

quantification of tensor completion. Existing work on the uncertainty quantification of

matrix completion (Chen, Fan, Ma & Yan 2019) and tensor completion (Cai, Poor &

Chen 2022) typically relies on asymptotic analysis of the estimator by a specific completion

algorithm and assumes that data is missing uniformly at random. In this paper, we aim

to devise a data-driven approach that does not rely on a specific choice of the completion

algorithm nor assume the data is missing uniformly at random, which is more adaptive to

real application scenarios.
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Conformal prediction (Vovk et al. 2005) is a model-agnostic approach for uncertainty

quantification. Recently, Gui et al. (2023) applies the idea of conformal prediction to

matrix completion under the assumption that data is missing independently. The method

requires one to estimate the missing propensity of each matrix entry and weigh them

accordingly to construct well-calibrated confidence regions. In this paper, we generalize

this idea to tensor completion. The generalization is non-trivial as one cannot simply

reshape the tensor back to a matrix for the conformal prediction without significantly

increasing the dimensionality of the nuisance parameter. We keep the tensor structure

and leverage low-rank tensor representations for dimension reduction. Furthermore, we

do not assume data is missing independently but allow for locally-dependent missingness.

We capture such correlatedness of missingness by a novel low-rank tensor Ising model,

which could be of independent interest. Finally, we propose a Riemannian gradient descent

algorithm (Kressner et al. 2014) for scalable computation, which is necessary since tensor

data is typically high-dimensional.

The key insight of the method is that one puts higher weight on the tensor entries

with a higher probability of missing, which can be considered as “nearest neighbors” of

the missing entries. Such a weighted conformal prediction approach (Tibshirani et al.

2019) is also seen in spatial conformal prediction (Mao et al. 2022) and localized conformal

prediction (Guan 2023) where higher weights are put on neighbors in the Euclidean or

feature space. However, our method is significantly different in that we estimate the weights

by using the entire tensor and determine the weights of all tensor entries altogether while

other methods determine the weight of each data locally and thus can be slow under the

tensor setting.

The remainder of the paper is organized as follows. We outline the notations used in

the paper in Section 1.1. Section 2 describes the conformalized tensor completion (CTC)

method and the probabilistic model for the data missingness. Section 3 is dedicated to the
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computational algorithm of the CTC. We validate the performance of our proposed CTC

using extensive simulations in Section 4 and a real data application to a geophysics dataset

in Section 5. Section 6 concludes. The supplemental material contains technical proofs and

additional details and results of the simulation and data application.

1.1 Notation

Throughout this paper, we use calligraphic boldface letters (e.g. A,B) for tensors with at

least three modes, boldface uppercase letters (e.g. X,Y) for matrices, boldface lowercase

letters (e.g. u,v) for vectors and blackboard boldface letters (e.g. S,T) for sets. To index

a tensor/matrix/vector, we use square brackets with subscripts such as [A]i1...iK , [X]ij, [u]i

and will ignore the square brackets when it is clear from the context. For a positive integer

n, we denote its index set {1, . . . , n} as [n]. For a K-mode tensor with size d1×· · ·×dK , we

use S to denote [d1]× · · · × [dK ], namely the indices of all tensor entries, and we often use

a single index such as i, j, s instead of a K-tuple to denote elements from S for notational

brevity.

For any tensors X ,Y ∈ Rd1×···×dK , we use vec(X ),vec(Y) to denote the correspond-

ing vectorized tensors, where all entries are aligned in such an order that the first in-

dex changes the fastest. We use ⟨X ,Y⟩ to denote tensor inner product and basically

⟨X ,Y⟩ = vec(X )⊤vec(Y). Tensor Frobenius norm ∥X∥F is defined as
√
⟨X ,X ⟩ and

tensor max-norm ∥X∥∞ is defined as maxs∈S |Xs|. For any tensor X ∈ Rd1×···×dK and any

matrix U ∈ RJ×dk , the k-th mode tensor-matrix product, denoted as X ×k U, is a tensor

of size d1 × · · · × dk−1 × J × dk+1 × · · · × dk that satisfies:

[X ×k U]i1...ik−1jik+1...iK =

dk∑
ik=1

[X ]i1...ik...dK [U]jik .

More preliminaries on tensor notations and the related algebra will be covered in later

sections and we refer our readers to Kolda & Bader (2009) for more references on the
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related tensor algebra. In this paper, when referring to a tensor that is a random variable,

we add a tilde over the top of the tensor such as W̃ , X̃ and use the raw version W ,X to

denote concrete samples. We add an asterisk to the superscript such as X ∗,B∗ to denote

the non-random, ground truth parameters.

2 Method

Suppose we have a K-mode random tensor X̃ of size d1 × · · · × dK . Further, suppose

that one obtains a sample X for X̃ with part of the entries in X missing. To encode the

missingness in X , we define the binary missingness tensor W ∈ {−1, 1}d1×···×dK and set

Ws = 1 when Xs is observed and Ws = −1 when Xs is missing. We assume that the

missingness W is a sample of a random binary tensor W̃ whose likelihood is p(·).

The tensor completion problem (Yuan & Zhang 2016, Xia et al. 2021, Cai, Li, Poor

& Chen 2022) deals with estimating the values in X where Ws = −1, i.e. where data is

missing. Although the main framework of our paper does not rely on a specific choice of

the tensor completion algorithm, it is beneficial to provide one example here which is also

the algorithm we will be using in our numerical experiments and data application.

Since one only has one sample X of X̃ , estimating the missing values in X is impossible

without imposing additional parsimony over the estimator. Following the literature on

tensor completion (Kressner et al. 2014, Xia et al. 2021, Cai, Li & Xia 2022b), we assume

that the estimator has a low tensor rank and solve for the estimator by the following

constrained least-square problem:

min
A:rank(A)≤r

1

2

∑
s:Ws=1

(Xs −As)
2 , (1)

where the notion of tensor rank will be introduced later. We denote the minimizer of (1) as

X̂ . The goal of the paper is to quantify the uncertainty for X̂ by constructing confidence

interval C(X̂ ) around X̂ to coverX with a pre-specified level of confidence. The framework,
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called conformalized tensor completion, will be introduced next.

2.1 Conformalized Tensor Completion (CTC)

Conformal prediction (Vovk et al. 2005) is a model-agnostic, distribution-free approach

for predictive uncertainty quantification. To put in the context of the tensor completion

problem, we utilize specifically the split conformal prediction (Papadopoulos et al. 2002)

approach for its simplicity and scalability to complex data structures such as tensor data.

We leave the discussion of full conformal prediction (Shafer & Vovk 2008) to future work.

Split conformal prediction starts by partitioning all observed entries in X , whose indices

are denoted as Sobs, randomly into a training set Str and a calibration set Scal. One first

provides a tensor completion estimator X̂ using the training set only, say by solving for (1)

using entries in Str. Then one calculates the non-conformity score over the calibration set

by a score function S(Xs, X̂s) such as S(Xs, X̂s) = |Xs−X̂s|. To quantify the uncertainty of

X̂s∗ at any missing entry s∗ ∈ Smiss, where Smiss includes the indices of all missing entries,

the canonical conformal interval at (1−α) confidence level is constructed as C1−α,s∗(X̂ ) =

{x ∈ R|S(x, X̂s∗) ≤ q̂}, with q̂ defined as:

q̂ = Q1−α

(
1

|Scal|+ 1
·
∑
s∈Scal

δS(Xs,X̂s)
+

1

|Scal|+ 1
· δ+∞

)
, (2)

where δa is a point mass at x = a and Qτ (·) extracts the (100τ)th quantile of a CDF.

The validity of such a conformal interval C1−α,s∗(X̂ ) relies on the assumption of data

exchangeability (Lei et al. 2018). To put it in the context of tensor completion, we re-label

Scal ∪ {s∗} as {s1, . . . , sn+1}, with n = |Scal| and sn+1 = s∗ and define event E0 as:

E0 =
{
W̃s = 1 for s ∈ Str ∪ Scal, Scal ∪ {s∗} = {s1, . . . , sn+1} and W̃s = −1 o.w.

}
. (3)

Then data exchangeability is equivalent to saying that the probability:

P

[
W̃sk = −1 and W̃s = 1 for s ∈ Sk

∣∣∣∣E0

]
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is equal for all k = 1, . . . , n + 1, where Sk = {s1, . . . , sn+1} \ {sk}. Equivalently, this

states that conditioning on observing data only from Str and n out of n + 1 entries from

{s1, . . . , sn+1}, it is equally likely to observe any n entries from {s1, . . . , sn+1}. This assump-

tion will hold when data are missing independently with the same probability, a common

assumption made in the literature on matrix/tensor completion uncertainty quantifica-

tion (Chen, Fan, Ma & Yan 2019, Cai, Poor & Chen 2022). However, this assumption

might not hold when the data missingness is dependent and is surely violated when the

missingness is independent but with heterogeneous probabilities. Therefore, it is necessary

to account for more general data missing patterns when conducting uncertainty quantifi-

cation.

We modify the canonical conformal prediction to accommodate more general data miss-

ing patterns by re-weighting each calibration entry using the weighted exchangeability

framework (Tibshirani et al. 2019). The result is summarized in Proposition 2.1.

Proposition 2.1. For any testing entry s∗ ∈ Smiss, let Scal ∪ {s∗} = {s1, . . . , sn+1} and

Sk = {s1, . . . , sn+1} \ {sk}, then define pk as:

pk = P
(
W̃s = 1 for s ∈ Str ∪ Sk,W̃s = −1 o.w.

)
, (4)

for k = 1, . . . , n + 1. Let X̂ be the output of any tensor completion method using entries

only from Str and define q̂s∗ as:

q̂s∗ = Q1−α

(
n∑

i=1

ωsi · δS(Xs,X̂s)
+ ωsn+1 · δ+∞

)
, where ωk =

pk∑n+1
i=1 pi

, (5)

and construct the (1−α)-level conformal interval as C1−α,s∗(X̂ ) = {x ∈ R|S(x, X̂s∗) ≤ q̂s∗},

then given the definition of E0 in (3), we have:

P

(
Xs∗ ∈ C1−α,s∗(X̂ )

∣∣∣∣E0

)
≥ 1− α. (6)

We provide the detailed proof in Appendix A.1. Proposition 2.1 indicates that as long
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as one can properly weight each calibration entry in proportion to pk as defined in (4), one

can obtain the conditional coverage guarantee in (6). A similar result to Proposition 2.1

has been established for conformalized matrix completion (Gui et al. 2023), where the data

is assumed to be missing independently. In our paper, we do not assume independent

missingness but provide a more general statement that requires one to weight each cali-

bration and testing entry by directly evaluating the likelihood of W̃ under n+ 1 different

missingness, where each time we set 1 out of n + 1 entries as missing. In Section 2.2, we

will formally introduce the likelihood of the binary tensor W̃ that nests the independent

missingness as a special case.

2.2 Missing Propensity Model

The key to constructing the conformal interval with coverage guarantee is to properly weight

each calibration sample by pk in (4), which requires the knowledge of the likelihood of W̃ .

In practice, one does not have access to such knowledge but needs to estimate the likelihood

of W̃ , given a single sample W , and then plug in (4) to get an estimator p̂k. Previous

works (Chen, Fan, Ma & Yan 2019, Cai, Poor & Chen 2022, Gui et al. 2023) assume

that all matrix/tensor entries are missing independently, potentially with heterogeneous

probabilities. This assumption, however, is not general enough. For example, for spatio-

temporal tensors, data might miss together if located close in space or time. As another

example, hypergraph adjacency tensor (Ke et al. 2019) may have data missing together if

two entries share a group of nodes in the network.

Accounting for the dependencies of binary random variables turns out to be even more

challenging in our context because all the binary random variables in W̃ are embedded

in a tensor grid with ultra-high dimensionality. Fortunately, the Ising model (Cipra 1987)

provides one way of modeling dependent binary random variables on a lattice grid. The

binary random variables here are the indicators of data missingness instead of atomic spins
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in ferromagnetism but a similar idea applies to our modeling context.

To start with, the Ising model prescribes a Boltzmann distribution for W̃ : p(W̃) ∝

exp[−βH(W̃)], where β > 0 is the inverse temperature parameter and H(W̃) is the Hamil-

tonian of W̃ , describing the “energy” of W̃ . In our paper, we extend the richness of this

model by augmenting p(W̃) with an unknown tensor parameter B ∈ Rd1×···×dK such that:

p(W̃ |B) ∝ exp{−H(W̃ |B)} (7)

H(W̃ |B) = −1

2

∑
i∼j

g(Bi,Bj)W̃iW̃j −
∑
i

h(Bi)W̃i, (8)

where i, j ∈ [d1] × · · · × [dK ], g(·, ·) is a symmetric bi-variate function and h(·) is a uni-

variate function with the inverse temperature parameter β being incorporated into g(·, ·)

and h(·), and i ∼ j means that the two entries indexed by i and j are “neighbors”. For

brevity, we often denote g(Bi,Bj) as gij and h(Bi) = hi for any i, j. We call (7) together

with (8) as the missing propensity model.

One can interpret the unknown parameter B as a 1-dimensional feature of each tensor

entry. Each neighboring pair of entries i and j contribute to the Hamiltonian via their

“co-missingness” W̃iW̃j and the interaction of their features Bi,Bj through g(Bi,Bj).

The function g(·, ·) describes the tendency of neighboring entries to be observed or missing

together. Every entry i also contributes individually to the Hamiltonian via hi, commonly

known as the “external magnetic field” when modeling ferromagnetism. In our context, the

function h(·) describes the tendency of each entry to be observed or missing. We provide

two concrete examples here to provide the interpretation of the model.

Example 2.2 (Independent Bernoulli Model). Suppose that g(·, ·) = 0, and let h(x) =

0.5 · log f(x)/[1− f(x)], where f(·) is an inverse link function (e.g. sigmoid function), then
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the missing propensity model indicates that for every s ∈ [d1]× · · · × [dK ]:

W̃s =


1, p = f(Bs)

−1, p = 1− f(Bs),

(9)

and all W̃s are independent. This independent Bernoulli model nests the previous works

that assume missing uniformly at random as a special case.

Example 2.3 (Ising Model). Suppose that h(·) = 0, and let g(x, y) = xy. Under this

scenario, the conditional distribution of W̃s, given all other entries in W̃ as W̃−s, is:

p(W̃s = 1|B,W̃−s) =
exp

[
2Bs

∑
j∈N (s) W̃jBj

]
1 + exp

[
2Bs

∑
j∈N (s) W̃jBj

] = f(Bs|σs), (10)

where N (s) = {j ∈ [d1]× · · ·× [dK ]|s ∼ j}, and f(x|σ) = [1+ exp(−x/σ)]−1 is the sigmoid

function with scale parameter σ. This model is similar to the Bernoulli model in (9) but has

entry-specific scale parameter σs = (2
∑

j∈N (s) W̃jBj)
−1 that depends on the missingness

and feature of the neighboring entries.

Given the missing propensity model in (7) and (8), we can compute the pk according

to (4) and obtain the conformal weight ωk as:

ωk =
pk∑n+1
i=1 pi

=
exp

[
−2
∑

sj∈N (sk)
g(Bsk ,Bsj)W̃sj − 2h(Bsk)

]
∑n+1

i=1 exp
[
−2
∑

sj∈N (si)
g(Bsi ,Bsj)W̃sj − 2h(Bsi)

] , (11)

with W̃s = 1 for any s ∈ Str ∪ Scal ∪ {s∗} and W̃s = −1 otherwise. Unfortunately,

computing ωk is still slow in this way because for each s∗ ∈ Smiss, we have to temporarily

set W̃s∗ = 1 to compute all the weights. To speed up the computation, we approximate the

weight in (11) by using the observed binary tensor W instead, and thus the only difference

is that now we have Ws∗ = −1 for all s∗ ∈ Smiss. This approximation makes very little

difference since it will only affect those calibration entries in the neighborhood of s∗ and

the total number of calibration entries is much larger. In the simulation section, we also

demonstrate that this approximation has a very negligible impact on the coverage of the
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conformal interval.

With this approximation, the conformal weight ωk is now proportional to (1− p̃sk)/p̃sk ,

where p̃s = p(W̃s = 1|[W̃ ]s′ = [W ]s′ ,∀s′ ̸= s) is the full conditional probability of entry

s being observed given all other entries. The only problem remaining is to estimate the

tensor parameter B using a single sample W , which we will discuss next.

3 Estimating Algorithm

In this section, we discuss the details of estimating B based on a single binary tensor sample

W drawn from the missing propensity model specified by (7) and (8). More specifically,

we attempt to estimate B using WStr , the binary tensor with 1 only in the training set Str.

We describe the estimation framework in Section 3.1 and the algorithm in Section 3.2.

3.1 Low-rank MPLE Framework

Since we only have access to one sample W and the tensor parameter B is of the same

dimensionality as W , it is infeasible to obtain an estimator B̂ without imposing additional

constraints over B. Similar to previous literature (Wang & Li 2020, Cai, Li & Xia 2022a),

we assume that the tensor B has low tensor rank.

In this paper, we assume that the tensor B has a low Tensor-Train (TT) rank (Oseledets

2011). A low TT-rank tensor A can be represented by a series of 3-mode TT factor tensors

Tk ∈ Rrk−1×dk×rk , k = 1, . . . , K, r0 = rK = 1, where for every entry of A, one has:

[A]i1,...,iK = [T1]:i1:[T2]:i2: · · · [TK ]:iK :, (12)

and the right-hand side is a series of matrix multiplication. We say r = (r1, . . . , rK−1) is the

TT-rank of A and compactly, we write A = [T1, . . . ,TK ] and ranktt(A) = r. As compared

to the more commonly used Tucker rank (Kolda & Bader 2009), the Tensor-Train rank

ensures that the number of parameters representing a low-rank tensor scales linearly with
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K, the number of modes, making the low TT-rank tensors more efficient for representing

high-order tensors.

To ensure the identifiability of TT factors T1, . . . ,TK in (12), it is often required that

T1, . . . ,TK−1 being left-orthogonal. A 3-mode tensor T ∈ Rd1×d2×d3 is left-orthogonal if

L(T )⊤L(T ) = Id3×d3 , where L(·) : Rd1×d2×d3 7→ R(d1d2)×d3 is the so-called left-unfolding

operator. Finding the representation (12) of a low TT-rank tensor with left orthogonality

constraint can be achieved by the TT-SVD algorithm (Oseledets 2011). For completeness,

we restate the TT-SVD algorithm in Algorithm 1 and denote it as SVDtt
r (·).

Algorithm 1 Tensor-Train Singular Value Decomposition (TT-SVD)

Input: Tensor X ∈ Rd1×···×dK , tensor-train rank r = (r1, . . . , rK−1).
A← X , r0, rK ← 1.
for k = 1, . . . , K − 1 do

A← reshape[A, (rk−1dk, dk+1 · · · dK)]. % reshape(·, ·) from MATLAB
Conduct SVD on A and truncate at rank rk: A ≈ USV⊤.
Tk ← reshape[U, (rk−1, dk, rk)].
A← SV⊤.

end for
TK ← reshape(A, (rK−1, dK , 1)).

Output: Tensor-Train representation X̂ = [T1, . . . ,TK ] with ranktt(X̂ ) ≤ r.

Given the assumption that the tensor B has low TT-rank r = (r1, . . . , rK−1), we can

re-formulate the MLE of B as the solution of a low-rank tensor learning problem:

B̂ = argmin
B:ranktt(B)≤r

− log p(W̃ = WStr |B), (13)

where ranktt(B) = (r′1, . . . , r
′
K−1) ≤ r means that r′k ≤ rk for any k = 1, . . . , K − 1.

However, the likelihood in (13) is incorrect since we did not account for the random

sampling of the training set, and is also difficult to evaluate its normalizing constant.

To circumvent these issues, we consider estimating B by the maximum pseudo-likelihood

estimator (MPLE), which is a common approach for the estimation and inference of Ising

model (Ravikumar et al. 2010, Barber & Drton 2015, Bhattacharya & Mukherjee 2018).
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Formally, for each entry i, define p̃i(B) as:

p̃i(B) = p
(
W̃i = 1|[W̃ ]s = [WStr ]s,∀s ̸= i,B

)
=

exp
[
2
∑

j∈N (i) g(Bi,Bj)[WStr ]j + 2h(Bi)
]

1 + exp
[
2
∑

j∈N (i) g(Bi,Bj)[WStr ]j + 2h(Bi)
] . (14)

and we often write it directly as p̃i. The low-rank MPLE of B can now be written as:

B̂ = argmin
B:ranktt(B)≤r

ℓ(WStr |B) = −
∑

i:[WStr ]i=1

log qp̃i −
∑

i:[WStr ]i=−1

log (1− qp̃i) , (15)

where we q ∈ (0, 1) is the probability of selecting an observed entry into the training set.

We discuss the optimization algorithm for solving (15) next.

3.2 Riemannian Gradient Descent (RGrad) Algorithm

To solve for (15), a natural idea is to directly estimate the tensor-train factors T1, . . . ,TK

for B̂ one at a time, while keeping the others fixed, and iterate until convergence. Such

an alternating minimization algorithm has been applied to low-rank binary tensor de-

composition (Wang & Li 2020, Lee & Wang 2020). However, alternating minimization

is computationally inefficient here as each step requires fitting a generalized linear model

(GLM) with high-dimensional covariates. Another candidate approach for estimating B̂

is the projected gradient descent (Chen, Raskutti & Yuan 2019), where in each iteration

one updates B along the gradient direction first and then projects it back to the low-rank

tensor space with TT-SVD. This is also undesirable since the projection for a high-rank

tensor can be very slow.

In this paper, we propose an optimization technique called Riemannian gradient de-

scent (RGrad), motivated by the fact that rank-r tensor-train tensors lie on a smooth

manifold (Holtz et al. 2012), which we denote as Mr. As compared to the aforementioned

methods, RGrad is faster because each step updates B with a gradient along the tangent

space of B, avoiding fitting multiple high-dimensional GLMs. Also, the projection from the
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tangent space back to the manifold Mr is faster than the projected gradient descent since

the tensors in the tangent space are also low-rank. RGrad has been extensively applied to

tensor completion (Kressner et al. 2014, Steinlechner 2016, Cai, Li & Xia 2022b), general-

ized tensor learning (Cai, Li & Xia 2022a) and tensor regression (Luo & Zhang 2022). The

current work, to the best of our knowledge, is the first to apply RGrad to the low TT-rank

binary tensor decomposition.

To summarize the RGrad algorithm, we break down the procedures into three steps.

Step I: Compute Vanilla Gradient. We first compute the vanilla gradient ∇ℓ(WStr |B)

at the current iterative value B. Formally, the vanilla gradient tensor G satisfies:

[G]i = 2
∑

j∈N (i)

(Vi[WStr ]j + Vj[WStr ]i) gx(Bi,Bj) + 2h′(Bi)Vi, (16)

where gx(·, ·) = ∂g(·, ·)/∂x and Vi = (1− p̃i)(1− qp̃i)
−1(qp̃i − 1{[WStr ]i=1}), with p̃i defined

in (14).

Step II: Tangent Space Projected Gradient Descent. Suppose that the current iterative

value B has a tensor-train representation B = [T1, . . . ,TK ]. Then any tensor A within the

tangent space T at B has an explicit form:

A =
K∑
k=1

Ck, Ck = [T1, . . . ,Tk−1,Yk,Tk+1, . . . ,TK ], (17)

with the constraint that L(Yk)
⊤L(Tk) = Ork×rk for all k < K, where O is a zero matrix,

and Ck has the property that ⟨Ci,Cj⟩ = 0 for all i ̸= j. In this step, one projects the vanilla

gradient G from step I onto T and obtains the projected gradient PT(G). Thanks to the

orthogonality of different Ck, the projection problem is solving:

min
Yk:L(Yk)⊤L(Tk)=Ork×rk

1

2
∥G − Ck∥2F, s.t. Ck = [T1, . . . ,Tk−1,Yk,Tk+1, . . . ,TK ], (18)
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for any k ≤ K − 1 and Yk is unconstrained if k = K. Solution to (18) is:

L(Ŷk) =
[
Irk−1dk − L(Tk)L(Tk)

⊤] (B≤k−1 ⊗ Idk
)⊤ G<k>

(
B≥k+1

)⊤ [B≥k+1
(
B≥k+1

)⊤]−1

,

(19)

for k ≤ K − 1 and:

L(ŶK) =
(
B≤K−1 ⊗ IdK

)⊤ G<K>, (20)

where ⊗ is the matrix Kronecker product. In (19) and (20), G<k> is the k-mode separation

of tensor G, which basically reshapes G to a matrix of size
(∏

l≤k dl
)
×
(∏

l>k dl
)
. Any tensor

B has its k-mode separation as B<k> = B≤kB≥k+1, where B≤k,B≥k+1 are called the k-th

left part and (k+1)-th right part. Given that B = [T1, . . . ,TK ], one can recursively compute

B≤k as (B≤k−1⊗ Idk)L(Tk) and B≥k+1 as R(Tk+1)(Idk+1
⊗B≥k+2) with the convention that

B≤0 = B≥K+1 = 1, where R(·) : Rd1×d2×d3 7→ Rd1×d2d3 is the right-unfolding operator.

After computing Ŷk with (19) and (20), one ends up with Ĉk = [T1, . . . , Ŷk, . . . ,TK ]

and thus the projected gradient PT(G) =
∑

k Ĉk. This step is completed after one updates

B to B̃ = B − ηPT(G), where η is a constant step size.

Step III: Retraction. As a property of low TT-rank tensors, the updated tensor B̃ has its

TT-rank upper bounded by 2r. To enforce the rank constraint, the last step of RGrad is to

retract B̃ back to the manifold Mr. We do so by applying TT-SVD to B̃: B′ = SVDtt
r (B̃),

and B′ will be the value used for the next iteration.

We summarize the RGrad algorithm in Algorithm 2. To provide an initial estimator of

B, we apply TT-SVD to a randomly perturbed version of the binary tensor WStr , which

works quite well empirically. We typically set η = 0.1 and denote the output of Algorithm 2

as RGrad(WStr , r). By assuming dk = O(d), rk = O(r),∀k and maxs |N (s)| = O(K), the

computational complexity of RGrad is O(K(dKr2 + dr3)) per iteration. See Steinlechner

(2016) for more details on the computational complexity of RGrad.

Combining all the discussions in Section 2 and 3, we summarize the conformalized tensor

completion (CTC) algorithm in Algorithm 3. We make several remarks for Algorithm 3.
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Algorithm 2 MPLE of Low-rank Ising Model with Riemannian Gradient Descent

Input: Binary tensor WStr , tensor-train rank r = (r1, . . . , rK−1), step size η, train-
calibration split probability q.

Initialize: let E i.i.d.∼ N (0, σ2) and B̂ ← SVDtt
r (WStr +E) = [T̂1, . . . , T̂K ] by Algorithm 1.

for l = 1, . . . , lmax do
Compute the vanilla gradient G using (16).
for k = 1, . . . , K do

Compute Ŷk following (19) if k < K and (20) if k = K.

Ĉk ← [T̂1, . . . , T̂k−1, Ŷk, T̂k+1, . . . , T̂K ].
end for
PT(G)←

∑K
k=1 Ĉk.

B̃ ← B̂ − ηPT(G).
B̂ ← SVDtt

r (B̃) = [T̂1, . . . , T̂K ] by Algorithm 1.
end for

Output: Maximum Pseudo-Likelihood Estimator (MPLE) B̂ with ranktt(B̂) ≤ r.

Algorithm 3 Conformalized Tensor Completion (CTC)

Input: Data tensor X , tensor-train rank r, train-calibration split probability q ∈ (0, 1),
target mis-coverage α ∈ (0, 1), arbitrary tensor completion algorithm A.
S← {s ∈ [d1]× · · · × [dK ]|Xs ̸= NaN}. % indices of entries that are observed
W ← 2× 1{s∈S} − 1.
Randomly partition S independently into Str ∪ Scal with probability q and 1− q.
X̂ ← A(XStr). % [XStr ] = Xs if s ∈ Str and NaN otherwise

B̂ ← RGrad(WStr , r). % RGrad(·, ·) is Algorithm 2
for s ∈ Scal ∪ Sc do

p̃s ←
{
1 + exp

[
−2
∑

j∈N (s)[WStr ]jg(B̂s, B̂j)− 2h(B̂s)
]}−1

.

ωs ← (1− p̃s)p̃
−1
s .

end for
for s∗ ∈ Sc do % See Remark 3.1

Re-normalize ωs, s ∈ Scal and ωs∗ s.t.
∑

s∈Scal ωs + ωs∗ = 1.

q̂s∗ ← Q1−α

(∑
s∈Scal ωs · δS(Xs,X̂s)

+ ωs∗ · δ+∞

)
.

end for
Output: (1−α)-level conformal interval C1−α,s∗(X̂ )← {x ∈ R|S(x, X̂s∗) ≤ q̂s∗},∀s∗ ∈ Sc.
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Remark 3.1 (Fast Entry-wise Quantile Computation). In the last step of Algorithm 3, we

compute the empirical (1− α)-quantile of the weighted eCDF of the non-conformity score

of all calibration data. The for-loop looks slow superficially as one needs to evaluate the

quantile for each testing entry s∗. However, q̂s∗ can be computed faster via:

q̂s∗ =


+∞, if ωs∗ ≥ α

Q 1−α
1−ωs∗

(∑
s∈Scal

ωs

1−ωs∗
· δS(Xs,X̂s)

)
, if ωs∗ < α.

which only requires evaluating the quantile of a fixed eCDF shared by all testing entries.

Remark 3.2 (Rank Selection). The implementation of the CTC algorithm requires a proper

choice of the tensor-train rank r for the low-rank Ising model. Typically in low-rank tensor

learning literature (Wang & Li 2020, Cai, Li & Xia 2022a), either the Akaike Information

Criterion (AIC) (Akaike 1973) or the Bayesian Information Criterion (BIC) (Schwarz 1978)

is used for the rank selection. Unfortunately, they are not applicable here since we can only

compute the pseudo-likelihood. According to previous literature on the model selection of

Markov Random Fields (Ji & Seymour 1996, Csiszár & Talata 2006, Matsuda et al. 2021),

one can replace the likelihood in AIC/BIC with pseudo-likelihood and obtain the Pseudo-

AIC (P-AIC) and Pseudo-BIC (P-BIC), which are still consistent under some regularity

conditions. The P-AIC and P-BIC are defined as:

P-AIC(r′) = 2ℓ(WStr |B̂) + 2

{
K−1∑
k=1

[
dkr

′
k−1r

′
k − (r′k)

2
]
+ dKr

′
K−1

}
. (21)

P-BIC(r′) = 2ℓ(WStr |B̂) +

{
K−1∑
k=1

[
dkr

′
k−1r

′
k − (r′k)

2
]
+ dKr

′
K−1

}
log

(
K∏
k=1

dk

)
. (22)

Among all candidate ranks, we select the rank with the smallest P-AIC or P-BIC. In

Section C.2 of the supplemental material, we provide empirical evidence on the consistency

of P-AIC and the inconsistency of P-BIC.

Remark 3.3 (Estimation and Coverage Error Bound). In Section A.2 of the supplemental

material, we derive theoretically the non-asymptotic bound for ∥B̂−B∗∥F under the special
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case where g(x, y) = 0 (i.e. the Bernoulli model) and with the same assumption we further

derive the coverage probability lower bound of the CTC algorithm in Section A.3. It is a

remarkable result that the estimating error, as well as the shortfall of the coverage from

the target coverage, increases with (r∗d̄/d∗)1/2, where r∗, d̄, d∗ are
∏

k rk,
∑

k dk,
∏

k dk for

B∗, respectively. If one assumes that dk = O(d), rk = O(r),∀k, then the estimation error

and coverage shortfall scales with (r/d)(K−1)/2. Higher r/d indicates that the data missing

pattern is more complex and thus the uncertainty quantification is harder. Although we

do not have the theoretical results when g(x, y) ̸= 0, we show empirically in Section 4 that

this tendency also holds for the Ising model.

4 Simulation Experiments

In this section, we validate the effectiveness of the proposed conformalized tensor com-

pletion algorithm via numerical simulations. We consider order-3 cubical tensor of size

d × d × d and summarize our simulation settings below. Additional details about the

simulation setups and results are included in Section C of the supplemental material.

4.1 Simulation Setup

We simulate the d× d× d true tensor parameter B∗ via the Gaussian tensor block model

(TBM) (Wang & Zeng 2019), where B∗ = C ×1 U1 ×2 U2 ×3 U3 + E1 with C ∈ Rr×r×r

being a core tensor with i.i.d. entries from a Gaussian mixture model: 0.5 · N (1, 0.5) +

0.5 · N (−1, 0.5), and U1,U2,U3 ∈ {0, 1}d×r with only a single 1 in each row and E1
i.i.d.∼

N (0, 0.2). We re-scale the simulated B∗ such that ∥B∗∥∞ = 2. We enforce each column of

U1,U2,U3 to have 1 in consecutive rows so that the simulated B∗ demonstrates a noisy

“checker box” structure, as illustrated in Figure 1(a).

Given the simulated B∗, we then simulate the binary data missingness tensor W from

the Ising model. Throughout this section, we suppose that two tensor entries i and j are

18



neighbors, i.e. i ∼ j, if and only if their indices differ by 1 in just one mode. Consequently,

for 3-way tensors, each non-boundary entry has six neighbors. We simulate W from the

missing propensity model specified by (7) and (8) with a block-Gibbs sampler and generate

samples from a Monte Carlo Markov Chain (MCMC). The MCMC has 4 × 104 iterations

with the first 104 samples burnt in and we take one sample every other 103 iterations to

end up with n = 30 samples. In Figure 1(b), we visualize one simulated W .

Lastly, the data tensor X is generated from an additive noise model: X = X ∗ + E ,

which is similar to B∗, with X ∗ having a Tucker rank (3, 3, 3). The noiseless tensor X ∗

also possesses a “checker box” structure and is contaminated by the noise tensor E , whose

distribution depends on the specific simulation setting described later. We re-scale X ∗ to

have ∥X ∗∥∞ = 2 and define the signal-to-noise ratio (SNR) of X as ∥X ∗∥∞/∥E∥∞ and

re-scale E such that SNR= 2. The data tensor X is then masked by W , as plotted in

Figure 1(c).

Figure 1: Visualizations of key tensors in the simulation setup. (a) Ising model parameter
tensor B∗ with d = 40, r = 3. (b) Simulated binary tensor W with g(x, y) = xy/15, h(x) =
x/2. (c) Simulated data tensor X masked by W with r0 = 3, SNR = 2.0 and E having

i.i.d. N (0, 1) entries. (d) Estimated parameter B̂ from RGrad based on a 70% training set.

4.2 Conformal Prediction Validation

To validate the efficacy of the proposed conformalized tensor completion (CTC) algorithm,

we consider the simulation setting with d ∈ {40, 60, 80, 100}, r ∈ {3, 5, 7, 9}, g(x, y) ∈

{0, xy/15}. The noise tensor E is simulated based on two different uncertainty regimes: 1)

constant noise: [E ]s
i.i.d.∼ N (0, 1); 2) adversarial noise: [E ]s follows independent Gaussian
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distributionN (0, σ2
s), with σs = [2 exp(B∗

s)/[1+exp(B∗
s)]

−1. The adversarial noise simulates

cases where the missing entries have higher uncertainty than the observed entries.

For each simulation scenario, we apply the correctly specified CTC algorithm with

P-AIC selected rank and call it RGrad. As a benchmark, we also consider two other

versions of conformal inference: 1) unweighted: the unweighted conformal prediction; 2)

oracle: the weighted conformal prediction with the true tensor parameter B∗. We conduct

simulation over n = 30 repetitions, and for each repetition, we randomly split the observed

entries into a training and a calibration set with q = 0.7 and evaluate the constructed

conformal intervals on the missing entries, denoted as Smiss. For the tensor completion

algorithm, we choose low Tucker rank tensor completion coupled with Riemannian gradient

descent (Cai, Li & Xia 2022a). We use the absolute residual S(y, ŷ) = |y − ŷ| as the non-

conformity score. To evaluate the conformal intervals, we define the average mis-coverage

metric as:

Average Mis-coverage % =
100

|Q|
∑
τ∈Q

∣∣∣∣∣τ − 1

|Smiss|
∑

s∈Smiss

1{Xs∈Ĉτ,s(X̂ )}

∣∣∣∣∣ , (23)

with Q = {0.80, 0.81, . . . , 0.98, 0.99}. We plot the average mis-coverage with r = 3 in

Figure 2. We also plot the results with r = 9 in Section C.3 of the supplemental material.

According to the results, we find that with constant entry-wise uncertainty, even the

unweighted conformal intervals perform decently, but still have more mis-coverage than the

oracle case. Using our CTC algorithm significantly shrinks the mis-coverage and matches

the performance of the oracle case. Under the adversarial noise regime, we observed sig-

nificant mis-coverage (> 10%) of the unweighted conformal prediction, and using the CTC

algorithm provides conformal intervals with < 1% of mis-coverage, indicating that our

method helps in constructing well-calibrated confidence intervals.

The mis-coverage is even worse for the unweighted conformal prediction when missing-

ness is locally dependent based on the Ising model and the CTC algorithm still provides
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Figure 2: The average mis-coverage of three conformal prediction methods with d ∈
{40, 60, 80, 100}, r = 3 under the Bernoulli and Ising model. Two uncertainty regimes:
constant noise (const) and adversarial noise (adv) are considered. Results are based on 30
repetitions, error bars show the 2.5%, 97.5% quantiles, and the thicker lines show the range
of 25% to 75% quantile. The y-axis is plotted in log10-scale.

conformal intervals at the target coverage. In Figure 7 of Section C.3 of the supplemental

material, we further show that the mis-coverage of the unweighted conformal prediction is

mainly under-coverage as it cannot account for the increase of uncertainty in the testing

set under adversarial noise.

To provide a full landscape on how the conformal intervals based on our CTC algorithm

perform under different tensor rank r and tensor dimension d of the underlying parameter

B∗, we visualize in Figure 3 the empirical coverage of 90% and 95% conformal intervals

under different missingness and uncertainty regimes by r/d, i.e. the rank-over-dimension

of the tensor B∗, based on our RGrad method. Generally speaking, the higher r/d is, the

more difficult it is to estimate the missing propensity of the tensor data and thus the worse

the coverage of the conformal intervals, which echoes our theoretical result in Section A.3

of the supplemental material. Therefore, we conclude that our proposed method would

provide well-calibrated conformal intervals when the underlying missingness model has a

low tensor rank relative to the tensor size (i.e. r << d).

In Section C.3 of the supplemental material, we also compare our RGrad approach

with other binary tensor decomposition approaches such as CP and Tucker decomposition
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Figure 3: RGrad empirical coverage of the 90% and 95% conformal intervals under the
Bernoulli and Ising model with two noise regimes. x-axis is the r/d of the tensor parameter
B∗. Results are based on n = 30 repetitions and error bars are ±1.96 standard deviations.

for estimating the missing propensity and conducting conformal prediction. We find our

method to perform consistently well under all kinds of dependency and uncertainty regimes.

5 Data Application to TEC Reconstruction

Our proposed method can account for the locally-dependent data missingness, which is

a common data missing pattern for spatial data, therefore we apply our method to a

spatio-temporal tensor completion problem in this section as an application. Specifically,

we consider the total electron content (TEC) reconstruction problem over the territory of

the USA and Canada. The TEC data has severe missing data problems since they can

be measured only if the corresponding spatial location has a ground-based receiver. An

accurate prediction of the TEC can foretell the impact of space weather on the positioning,

navigation, and timing (PNT) service (Wang et al. 2021, Younas et al. 2022). Existing

literature (Pan et al. 2021, Sun et al. 2022, Wang et al. 2023) focuses on imputation and

prediction of the global and regional TEC and lacks data-driven approaches for quantifying

the uncertainty of the imputation and we aim at filling in this gap.

In Figure 4(a), we plot the TEC distribution over the USA and Canada from the VISTA
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TEC database (Sun, Chen, Zou, Ren, Chang, Wang & Coster 2023). The VISTA TEC is

a pre-imputed version of the Madrigal TEC (MIT Haystack Observatory 2012), which has

> 80% of the data missing globally. We use the VISTA TEC as the ground truth and the

Madrigal TEC data missingness to mask out entries in the VISTA TEC to simulate data

missingness close to what scientists observe in practice.

Figure 4: (a) The VISTA TEC at 00:02:30 UT, September 1, 2017. (b) The VISTA TEC in

(a) with data missingness from the Madrigal TEC. (c) Fitted B̂ based on the Ising model.

To set up the experiment, we use the first 20 days of data in September 2017, and

each day consists of a tensor of size 50× 115× 96. We use the first 5 days as a validation

set to search for the best g(·, ·) function for the Ising model. For each day, we fit the

CTC algorithm with a simple tensor completion algorithm based on (1) with a Tucker

rank at (3, 3, 3) and pick the tensor-train rank r = (r, r) by P-AIC. Based on Figure 3, we

know that the Ising model exhibits under-coverage as r/d increases over 0.15, therefore,

we select the rank r from 2 ≤ r ≤ 7 only. For each day, we consider the Ising model with

g(x, y) = 5xy/4, h(x) = x/2, the Bernoulli model with g(x, y) = 0, h(x) = x/2 and the

unweighted conformal prediction for comparison. In Table 1, we report the results on the

average mis-coverage % and the empirical coverage of 90% and 95% CI.

method mis-coverage % 90% CI coverage % 95% CI coverage %
unweighted 42.1(6.49) 46.3(6.58) 52.3(7.23)
Bernoulli 23.1(5.34) 64.6(5.97) 76.8(5.03)
Ising 6.01(2.45) 90.0(6.06) 94.2(3.74)

Table 1: Mis-coverage % and empirical coverage of CI at 90% and 95% level for the un-
weighted conformal prediction and weighted conformal prediction with Bernoulli and Ising
model for data during Sept 6 to Sept 20, 2017.
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Figure 5: All except the lower-left panels show the average 95% conformal intervals and
the empirical coverage for 20 different bins of TEC values on Sept 6, 2017. Each bin spans
1.5 TEC units. The lower-left panel shows the missing probability of different bins. A bin
is termed “high missingness” if > 10% of the data is missing.

In Figure 5, we visualize the average 95% CI and its empirical coverage for 20 different

bins of TEC values on Sept 6, 2017. It is shown that the data missingness is not uniform

across different bins of TEC values and different bins have different distributions of the

imputation errors (see how the prediction deviates from the truth), making the unweighted

conformal prediction less favorable especially when data missingness is high. These empir-

ical results reveal that by accounting for the heterogeneity and the spatial dependency of

data missingness, one can construct well-calibrated confidence intervals using our method.

6 Conclusion

In this paper, we propose a data-driven approach for quantifying the uncertainty of tensor

completion. Our method consists of two major steps. We first estimate the missing propen-

sity of each tensor entry using a parameterized Ising model and then plug in the missing
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propensity estimator to weight each tensor entry and then construct the confidence region

with split conformal prediction. We implement the estimation of missing propensity with a

computationally efficient Riemannian gradient descent algorithm and validate the resulting

conformal intervals with extensive simulation studies and an application to regional TEC

reconstruction. There are two limitations of our method. Firstly, we do not have a system-

atic approach to determine the best specification of the Ising model. Secondly, our Ising

model can only account for locally-dependent missingness but not arbitrary missingness.

We leave these topics to future research.
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SUPPLEMENTARY MATERIAL

This supplemental material contains three sections. Section A contains the proofs for propo-

sition 2.1 and additional theoretical results for the estimation error and coverage guarantee

for the Bernoulli model. Section B describes the technical lemmas used in Section A.

Section C contains additional details and results of the simulation experiments.

A Proofs of Theorems and Propositions

Throughout this section, for any tensor B ∈ Rd1×···×dK , we use d̄, d∗ to denote
∑

k dk and∏
k dk, respectively. For any tensor-train rank r = (r1, . . . , rK−1), we use r

∗ to denote
∏

k rk.

We use c, c′, C, C0, C1, . . . to denote positive absolute constants and cK , c
′
K , CK , CK,0, CK,1, . . .

to denote positive constants that only relate to K. For two sequences {an}∞n=1 and {bn}∞n=1,

we use an ≍ bn to represent limn→∞ an/bn = C > 0, with C being finite.

A.1 Proof of Proposition 2.1

Proof. Given any testing entry s∗ ∈ Smiss, we relabel all elements in Scal∪{s∗} as {s1, . . . , sn+1}.

Now recall the definition of E0 as:

E0 =
{
W̃s = 1 for s ∈ Str ∪ Scal, Scal ∪ {s∗} = {s1, . . . , sn+1} and W̃s = −1 o.w.

}
,

namely one observes data only at Str and n out of n+ 1 entries from {s1, . . . , sn+1}.

Let V denote the non-conformity score of the testing entry, then the weighted exchange-

ability framework in Tibshirani et al. (2019) states that one can treat V as a weighted draw

from {S(Xs1 , X̂s1), . . . ,S(Xsn+1 , X̂sn+1)}, with weight being:

P

[
V = S(Xsk , X̂sk)

∣∣∣∣E0

]
=

P

[
W̃sk = −1,W̃s = 1 for s ∈ Sk

∣∣∣∣E0

]
n+1∑
l=1

P

[
W̃sl = −1,W̃s = 1 for s ∈ Sl

∣∣∣∣E0

] ,
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where Sk = {s1, . . . , sn+1}\{sk}, for k = 1, . . . , n+1. Multiplying both the numerator and

the denominator by P(E0) leads to the weight in the form of pk/
∑n+1

l=1 pl, with pk defined

as (4). The coverage guarantee in (6) is then a direct result of theorem 2 of Tibshirani

et al. (2019).

A.2 Bernoulli Model Estimation Error Bound

In this subsection, we derive the error bound of the MPLE estimator B̂ under the assump-

tion that g(x, y) = 0, i.e. all entries of WStr are observed independently with probability

q(exp[−2h(B∗
s)] + 1)−1. Evidently, under this assumption, the MPLE is identical to MLE

since the pseudo-likelihood is also the true Bernoulli likelihood. Our main result is in

Theorem A.5. To establish the theoretical result, we make several additional assumptions:

Assumption A.1. h(·) : R 7→ R is a non-decreasing, non-constant twice continuously

differentiable function with h′′(·) ≥ 0.

Assumption A.2. The MPLE estimator B̂ and the true tensor parameterB∗ have bounded

max-norm: ∥B̂∥∞, ∥B∗∥∞ ≤ ξ.

We define f(x) = exp[2h(x)]/(1 + exp[2h(x)]) and the following two constants:

αξ = sup
|x|≤ξ

|2h′(x)|, γξ = inf
|x|≤ξ

min

{[
f ′(x)

f(x)

]2
− f ′′(x)

f(x)
,

qf ′′(x)

1− qf(x)
+

[
qf ′(x)

1− qf(x)

]2}
.

To see what these two constants represent, recall that the negative log-likelihood for WStr

given B can be written as the sum of each entry’s negative log-likelihood ℓi([WStr ]i|B),

which is defined as:

ℓi([WStr ]i|B) = −
[(

[WStr ]i + 1

2

)
log qf(Bi) +

(
1− [WStr ]i

2

)
log(1− qf(Bi))

]
.

It is not difficult to verify that αξ upper bounds |∂ℓi(·|B)/∂Bi| and γξ lower bounds

∂2ℓi(·|B)/∂B2
i for all i as long as maxs |Bs| ≤ ξ. By excluding the trivial case where h(·) is a

constant function, αξ is strictly positive. If for all |x| ≤ ξ, we have 1−(1−q)f(x)−f 2(x) > 0,
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then we can verify that γξ > 0 for common choices of h(·), such as the logit model

h(x) = x/2 or the probit model h(x) = 2−1 log[Φ(x)/(1 − Φ(x))]. For the remainder

of the appendix, we will assume generally that γξ > 0, which is simply saying that the

function ℓi(·|B) is γξ-strongly convex.

Finally, it is useful to define the tensor spectral norm and the tensor nuclear norm here:

Definition A.3. For a tensor A ∈ Rd1×···×dK , its spectral norm, denoted as ∥A∥σ, is

defined as:

∥A∥σ = sup
u1,...,uK

⟨A,u1 ◦ · · · ◦ uK⟩ , uk ∈ Sdk−1,∀k,

where ◦ denotes vector outer product and Sdk−1 is a unit sphere in Rdk .

Definition A.4. For a tensor C ∈ Rd1×···×dK , its nuclear norm ∥C∥∗ is defined as:

∥C∥∗ = inf

{∑
r

λr

∣∣∣∣C =
∑
r

λru1 ◦ · · · ◦ uK ,uk ∈ Sdk−1,∀k

}
.

With the aforementioned assumptions and notations, we have the following non-asymptotic

bound on ∥B̂ −B∗∥F:

Theorem A.5. Assume that g(x, y) = 0 and assumption A.1 and A.2 hold, and further

assume that B̂ reaches the global minimum of the negative log-likelihood ℓ(WStr |B) and the

entry-wise negative log-likelihood is γξ-strongly convex with γξ > 0, then:

P

(
1√
d∗
∥B̂ −B∗∥F ≤ 2CK,1

αξ

γξ

√
r∗d̄

d∗

)
≥ 1− exp

(
−C1d̄ logK

)
, (24)

where C1, CK,1 are some positive constants.

Proof. Using Taylor expansion upon ℓ(WStr |B̂) at B = B∗ yields:

ℓ(WStr |B̂) = ℓ(WStr |B∗) +
〈
∇ℓ(WStr |B∗), B̂ −B∗

〉
+

1

2
vec(B̂ −B∗)⊤H(B̌)vec(B̂ −B∗),

(25)

where B̌ is a convex combination of B̂ and B∗. Since, by assumption, B̂ reaches the global

minimum of ℓ(WStr |B), or ℓ(B) in short, we have ℓ(B̂) ≤ ℓ(B∗), and thus the sum of the
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last two terms in (25) are no greater than zero.

For the first term, let G∗ = ∇ℓ(B∗) and G∗ satisfies:

[G∗]s = −[1− f(B∗
s)] · 2h′(x) ·1{[WStr ]s=1} +

qf(B∗
s)[1− f(B∗

s)]

1− qf(B∗
s)

· 2h′(x) ·1{[WStr ]s=−1}, (26)

and it is easy to verify that E[[G∗]s] = 0 and ∥G∗∥∞ ≤ αξ. By Lemma B.1, we can lower

bound the first term as:

〈
∇ℓ(WStr |B∗), B̂ −B∗

〉
≥ −∥G∗∥σ∥B̂ −B∗∥∗. (27)

By Lemma B.2, we have ranktt(B̂−B∗) ≤ 2r, and then by Lemma B.3, we have ∥B̂−B∗∥∗ ≤√
(2r1) · · · (2rK−1) · ∥B̂ −B∗∥F. Therefore, to lower bound the RHS of (27), we only need

to upper bound the spectral norm of G∗. Since entry-wisely, G∗ is mean-zero and bounded

by αξ (therefore the sub-Gaussian norm is αξ), we can apply Lemma B.4 and get:

P

(
∥G∗∥σ ≤

√
8α2

ξ

[
d̄ log 5K + log

2

δ

])
≥ 1− δ. (28)

By setting δ = exp
(
−C1d̄ logK

)
, with C1 be some absolute constant, we can simplify (28)

as:

P
(
∥G∗∥σ ≤ CKαξ

√
d̄
)
≥ 1− exp

(
−C1d̄ logK

)
, (29)

with CK =
√

8 (log 5K + C1 logK + 1).

Combining these results, we can lower bound the RHS of (27) by:

−∥G∗∥σ∥B̂ −B∗∥∗ ≥ −CK,1αξ

√
d̄r∗∥B̂ −B∗∥F, (30)

with probability at least 1− exp
(
−C1d̄ logK

)
, where CK,1 = 2(K−1)/2CK .

For the quadratic form in (25), we have:

1

2
vec(B̂ −B∗)⊤H(B̌)vec(B̂ −B∗) ≥ γξ

2
∥B̂ −B∗∥2F > 0. (31)

35



Combining (30) and (31), we obtain:

P

(
1√
d∗
∥B̂ −B∗∥F ≤ 2CK,1

αξ

γξ

√
r∗d̄

d∗

)
≥ 1− exp

(
−C1d̄ logK

)
,

which completes the proof.

Remark A.6. Under the scenario where d1 ≍ · · · ≍ dK ≍ O(d) and r1 ≍ · · · rK−1 ≍ O(r),

the result in (24) can be reduced to:

P

(
1√
d∗
∥B̂ −B∗∥F ≤ 2CK

αξ

γξ

√(r
d

)K−1
)
≥ 1− exp

(
−C1d̄ logK

)
.

So the estimating error can scale with r/d, where lower r/d generally poses an easier binary

tensor decomposition problem with lower rooted mean-squared error.

A.3 Bernoulli Model Conformal Inference Coverage Guarantee

In this subsection, we utilize the theoretical result in Theorem A.5 and derive the coverage

probability lower bound of the CTC algorithm under the Bernoulli model. The result will

reveal how the estimating error of B∗ propagates into the mis-coverage rate. To begin with,

we state an essential lemma, which is a trivial extension of Theorem 3.2 of Gui et al. (2023)

under the conformalized matrix completion context:

Lemma A.7 (Theorem 3.2 of Gui et al. (2023)). Let X̂ be the output of any tensor

completion algorithm, and B̂ be the output of the RGrad algorithm and both X̂ , B̂ are based

on Str only, then given that g(x, y) = 0, we have:

E

[
1

|Smiss|
∑

s∈Smiss

1{Xs∈Ĉ1−α,s(X̂ )}

]
≥ 1− α− E[∆], (32)

where Ĉ1−α,s(X̂ ) is the conformal interval for testing entry s at (1 − α) level by the CTC

algorithm and ∆ is defined as:

∆ =
1

2

∑
s∈Scal∪{s∗}

∣∣∣∣∣ exp[−2h(B̂s)]∑
s∈Scal∪{s∗} exp[−2h(B̂s)]

− exp[−2h(B∗
s)]∑

s∈Scal∪{s∗} exp[−2h(B
∗
s)]

∣∣∣∣∣ . (33)
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We neglect the proof here since the generalization from matrix to tensor setting is trivial

as one can matricize the tensor into a matrix and the result holds automatically. By Lemma

A.1 in Gui et al. (2023), one can further upper bound ∆ by:

∆ ≤ ∥ exp[−2h(B̂)]− exp[−2h(B∗)]∥1∑
s∈Scal exp[−2h(B̂s)]

, (34)

where the h(·) is applied to tensors element-wisely and ∥ · ∥1 is the element-wise tensor ℓ1

norm. The quantity ∆ is trivially bounded by 1 as it is the total-variation (TV) distance

between two CDFs of discrete random variables. With this lemma, we now formally state

our main result:

Theorem A.8. Assume that the same assumptions hold as Theorem A.5 and further denote

lξ = inf |x|≤ξ exp[−2h(x)], uξ = sup|x|≤ξ exp[−2h(x)]. The (1 − α)-level conformal interval

Ĉ1−α,s(X̂ ) satisfies:

E

[
1

|Smiss|
∑

s∈Smiss

1{Xs∈Ĉ1−α,s(X̂ )}

]
≥ 1− α− 2CK,1cξ

(1− c)(1− q)

√
r∗d̄

d∗

− exp[−C1d̄ logK]− exp

[
−c2(1− q)d∗lξ

2

]
, (35)

for any 0 < c < 1, where q is the train-calibration split probability in the CTC algorithm

and cξ = uξα
2
ξ/(γξl

2
ξ).

Proof. Given Lemma A.7, the coverage guarantee can be derived if one can characterize an

upper bound for E[∆]. To upper bound ∆, we start from (34) and bound the numerator

on the RHS of (34) as:

∥ exp[−2h(B̂)]− exp[−2h(B∗)]∥1 ≤ sup
|x|≤ξ

|exp[−2h(x)] · 2h′(x)| · ∥B̂ −B∗∥1

≤ uξαξ · ∥B̂ −B∗∥1 ≤ uξαξ ·
√
d∗∥B̂ −B∗∥F. (36)

Then we can apply the result of Theorem A.5 to further bound (36) with high probability.

For the denominator of the RHS of (34), we can lower bound it first as ncallξ, and for
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ncal, since each tensor entry can become a calibration point independently with probability

exp[−2h(Bs)](1− q), where 0 < q < 1 is the train-calibration set split probability, we can

then apply the Chernoff bound and obtain:

P (ncal ≤ (1− c)(1− q)∥ exp[−2h(B∗)]∥1) ≤ exp

[
−c2(1− q)∥ exp[−2h(B∗)]∥1

2

]
, (37)

for any 0 < c < 1. By denoting the event {ncal ≥ (1 − c)(1 − q)∥ exp[−2h(B∗)]∥1} as E0

and the event in (24) as E1 and noticing that ∥ exp[−2h(B∗)]∥1 ≥ d∗lξ, then we have:

P

(
∆ ≤ 2CK,1

(1− c)(1− q)
·
uξα

2
ξ

γξl2ξ
·
√

r∗d̄

d∗

)
≥ 1− exp[−C1d̄ logK]− exp

[
−c2(1− q)d∗lξ

2

]
,

where the probability is the lower bound of the probability of the event E0 ∩ E1. With this

tail bound on ∆, one can upper bound E[∆] as:

E[∆] ≤ 2CK,1

(1− c)(1− q)
·
uξα

2
ξ

γξl2ξ
·
√

r∗d̄

d∗
+ exp[−C1d̄ logK] + exp

[
−c2(1− q)d∗lξ

2

]
, (38)

and thereby completes the proof.

Remark A.9. Under the scenario where d1 ≍ · · · ≍ dK ≍ O(d) and r1 ≍ · · · rK−1 ≍ O(r),

the coverage shortfall in (35), i.e. the difference between the lower bound in (35) and

(1− α), can be simplified into:

cK,ξ

(1− c)(1− q)
·
√(r

d

)K−1

+ exp [−cKd] + exp
[
−c′K,ξc

2(1− q)dK
]
,

where cK,ξ, c
′
K,ξ are positive constants that only relate to K and ξ. The first term is of

polynomial order with respect to r/d while the other two terms are of exponential order

with respect to d, therefore the first term is the dominating term and the under-coverage

of the conformal intervals scale primarily with r/d.
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B Technical Lemmas

All technical lemmas listed in this section are cited from existing works. Therefore, we

omit the proof here and refer our readers to the corresponding papers cited.

Lemma B.1 (Lemma 1 of Wang & Li (2020)). For two tensors A,B ∈ Rd1×···×dK , their

inner product ⟨A,B⟩ can be bounded as:

|⟨A,B⟩| ≤ ∥A∥σ∥B∥∗,

where ∥ · ∥σ, ∥ · ∥∗ are the tensor spectral norm and the tensor nuclear norm, respectively.

Lemma B.2 (Lemma 24 of Cai, Li & Xia (2022b)). Let A,B ∈ Rd1×···×dK be two low

tensor-train rank tensors with ranktt(A) = r1, rank
tt(B) ≤ r2, respectively. Then one has:

ranktt(A+B) ≤ r1 + r2.

Lemma B.3 (Lemma 25 of Cai, Li & Xia (2022b)). Let A ∈ Rd1×···×dK be a low tensor-train

rank tensor with ranktt(A) = r = (r1, . . . , rK−1) and has a left-orthogonal representation

A = [T1, . . . ,TK ], then:

∥A∥∗ ≤
√
r1 · · · rK−1 · ∥A∥F.

Lemma B.4 (Theorem 1 of Tomioka & Suzuki (2014)). For a random tensor A ∈

Rd1×···×dK with mean-zero and independent sub-Gaussian entries with sub-Gaussian norm

σ, its spectral norm satisfies:

∥A∥σ ≤

√
8σ2

[
d̄ log 5K + log

2

δ

]
,

with probability at least 1− δ.
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C Appendix for Simulation

C.1 Details of Simulation Setup

We summarize the data-generating model of all essential tensors involved in the simulation

experiment in Table 2.

Tensor Generating Model Additional Details

B∗ B∗ = C ×1 U1 ×2 U2 ×3 U3

C ∈ Rr×r×r,Ui ∈ Rdi×ri

C i.i.d.∼ 0.5 · N (−1, 0.5) + 0.5 · N (1, 0.5)

Ui =


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

... · · · ...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1


⊤

and each row of Ui has ⌈di/ri⌉ ones.

W p(W) ∝ exp [−H(W |B∗)]
based on (7) and (8)

simulate by block-Gibbs MCMC,
where in each proposal we first sample
I1 = {(i1, . . . , iK)|

∑
k ik is odd} then Ic1.

Each block is a Bernoulli model.
X X = X ∗ + E X is then masked by W .

X ∗ X ∗ = C∗ ×1 U
∗
1 ×2 U

∗
2 ×3 U

∗
3

C∗ ∈ R3×3×3,U∗
i ∈ Rdi×3 C∗,U∗

1,U
∗
2,U

∗
3

i.i.d.∼ N (0, 1)

E [E ]s
independent∼ N (0, σ2

s) σs =

{
1 constant noise

0.5 [1 + exp(−B∗
s)] adversarial noise

Table 2: Details of the tensors generated in the simulation experiment.

C.2 Results on the Missing Propensity Estimation Error

We examine here the effectiveness of the RGrad algorithm for recovering the tensor param-

eter B∗ from a single observation W . We consider d ∈ {40, 60, 80, 100} and r ∈ {3, 5, 7, 9}

when simulating B∗. For simulating W using the Ising model, we fix h(x) = x/2 and con-

sider either g(x, y) ∈ {0, xy/15}, where we term the case with g = 0 as the (independent)

Bernoulli model and the case with g(x, y) = xy/15 as the (product) Ising model. We split

the training and calibration set randomly based on a 70%− 30% ratio.

Under each combination of the choices of (d, r, g), we generate n = 30 repetitions from

a single chain of MCMC and fit RGrad to each repetition with the correctly specified g(·, ·)
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and a working rank r
′ ∈ {2, 3, . . . , 15}. In Table 3, we present the average rank selected by

the P-AIC and P-BIC under the Bernoulli and Ising model with various (d, r) combinations.

Bernoulli Model (g(x, y) = 0)
P-AIC P-BIC

rank d = 40 d = 60 d = 80 d = 100 d = 40 d = 60 d = 80 d = 100
r = 3 3.0 3.0 3.0 3.0 2.0 2.0 3.0 3.0
r = 5 5.0 5.0 5.0 5.0 2.0 2.1(0.3) 4.0 5.0
r = 7 6.2(0.4) 7.0 7.0 7.0 2.0 2.0 2.0 2.3(0.4)
r = 9 6.0(0.8) 8.8(0.4) 9.0 9.0 2.0 2.0 2.0 2.0

Ising Model (g(x, y) = xy/15)
P-AIC P-BIC

rank d = 40 d = 60 d = 80 d = 100 d = 40 d = 60 d = 80 d = 100
r = 3 3.4(2.0) 3.0 3.0 3.0 2.0 3.0 3.0 3.0
r = 5 7.7(4.1) 5.0 5.0 5.0 2.0 4.0 5.0 5.0
r = 7 13.9(0.2) 7.0 7.0 7.0 2.0 2.1(0.2) 4.0(0.2) 4.7(0.4)
r = 9 13.9(0.2) 9.0 9.0 9.0 2.0 2.0 2.0 3.9(0.3)

Table 3: Model selection result of the Bernoulli model and Ising model. Each number is
the mean rank selected by P-AIC/P-BIC with n = 30 repetitions followed by its standard
deviations, if non-zero. Boldface are the cases where the true rank is within 1.96 standard
deviations of the average rank.

Based on these numerical results, we find that the consistency of P-AIC and P-BIC

depends on r/d, or the “low-rankness” B∗. For tensors with high d and low r, both P-AIC

and P-BIC are consistent, and the inconsistency emerges as r/d becomes larger. Generally

speaking, P-AIC is more robust than P-BIC and is consistent across most of the simulation

scenarios except for two cases with small tensor sizes. We therefore suggest using P-AIC

for rank selection.

We then evaluate the fitted B̂ with relative squared error (RSE) defined as: ∥B̂ −

B∗∥F/∥B∗∥F. The results, as plotted in Figure 6, exhibit a tendency that as r/d becomes

larger, so does the RSE, which echoes the results of the model selection. Additionally, the

estimation error is lower for the Ising model, as compared to the Bernoulli model, given the

same r and d. We interpret this result as that the Ising model estimator can leverage the

additional information from neighbors to infer the missing propensity of each tensor entry.
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In Figure 1(d) of the main paper, we plot the estimator for B∗ shown in 1(a) by RGrad

based on a randomly chosen 70% training set and it is clear that B̂ mimics B∗ very well.

Figure 6: Relative square error of the MPLE B̂ under the Bernoulli (left) and Ising model
(right). The results are based on n = 30 repetitions with the working rank of each sample
determined by P-AIC and each model is fitted by a randomly chosen 70% training set.
Error bars show the 2.5% and 97.5% quantiles.

C.3 Results on Conformal Prediction Validation

As a companion result of Figure 2, we plot the empirical coverage and half of the average

confidence interval width of three conformal prediction methods under different simulation

scenarios in Figure 7. The mis-coverage of the unweighted conformal prediction comes

from under-coverage and is associated with shorter confidence intervals. The reason why

unweighted conformal prediction has under-coverage is that under the adversarial noise

setting, entries with higher missing propensity also have higher uncertainty, and using a

uniform weight underestimates the uncertainty of a missing entry. As one can tell from

Figure 7, our CTC algorithm matches the oracle case quite well and provides well-calibrated

confidence intervals.

Apart from these results, we also compared other binary tensor decomposition methods
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Figure 7: Empirical coverage and average confidence interval half-width of the three con-
formal prediction methods across the Bernoulli and Ising model with constant (const) or
adversarial (adv) noise. Results are based on n = 30 repetitions and error bars are ±1.96
standard deviations.

for estimating the missing propensity and conducting the weighted conformal prediction

with our method. We mainly consider two competing methods other than the unweighted

and oracle conformal prediction: 1) GCP: binary tensor decomposition with generalized

CP-decomposition (Wang & Li 2020, Hong et al. 2020); 2) Tucker: binary tensor decom-

position with generalized Tucker-decomposition (Lee & Wang 2020, Cai, Li & Xia 2022a).

Different from our approach, these two methods assume independence among all the binary

entries and thus they are misspecified under the Ising model. We conduct GCP with gra-

dient descent following (Hong et al. 2020) and Tucker with Riemannian gradient descent

following (Cai, Li & Xia 2022a) and select the corresponding ranks using the BIC crite-

rion, as suggested by the literature. We consider r = 3, d ∈ {40, 60} and list the average

mis-coverage % under the constant and adversarial noise regimes as well as the RSE of the

estimated B̂ in Table 4.

Our finding from Table 4 is that our method consistently provides well-calibrated con-

fidence intervals close to the oracle case and performs on average better than the GCP and
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Tucker method. Our mis-coverage % is statistically significantly better (p-value < 0.005)

than the Tucker method under the adversarial noise regimes across different tensor di-

mensions and missingness generating models. The GCP method, surprisingly, provides

confidence intervals close to our method but has significantly larger RSE for the estimator

B̂. We found that CP-decomposition tends to underestimate the weights of the calibration

data, therefore it has more testing data points with infinitely wide confidence intervals,

making it less favorable.

(d, Model) Method const. mis-coverage % adv. mis-coverage % RSE

(40, Bern)

unweighted 0.463(0.244) 11.1(0.389) /
oracle 0.381(0.205) 0.409(0.232) /
GCP 0.373(0.183) 1.66(0.965) 0.522(0.069)
Tucker 0.380(0.219) 0.841(0.431) 0.295(0.008)
RGrad 0.377(0.235) 0.773(0.404) 0.345(0.010)

(60, Bern)

unweighted 0.401(0.165) 11.0(0.241) /
oracle 0.202(0.082) 0.207(0.105) /
GCP 0.203(0.092) 0.380(0.298) 0.281(0.036)
Tucker 0.199(0.079) 0.842(0.231) 0.244(0.005)
RGrad 0.200(0.078) 0.821(0.226) 0.271(0.004)

(40, Ising)

unweighted 1.19(0.298) 17.3(0.528) /
oracle 0.568(0.278) 0.666(0.331) /
GCP 0.870(0.597) 1.24(0.840) 1.81(0.621)
Tucker 0.504(0.241) 1.80(0.653) 0.444(0.010)
RGrad 0.713(0.377) 1.13(1.21) 0.341(0.304)

(60, Ising)

unweighted 1.35(0.243) 17.2(0.310) /
oracle 0.302(0.136) 0.370(0.242) /
GCP 0.349(0.181) 0.638(0.506) 1.59(1.16)
Tucker 0.329(0.216) 2.03(0.368) 0.404(0.007)
RGrad 0.356(0.154) 0.580(0.339) 0.224(0.003)

Table 4: Method comparisons of different conformal prediction methods with r = 3. The
results include the average mis-coverage % defined in (23) under the constant (const.)
and adversarial (adv.) noise regimes as well as the relatively squared error (RSE) of the

estimator B̂.
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