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A. Proof of Theoretical Results in Section 2.3.

A.1. Proof of Theorem 2.1.

PROOF. The objective function F (A
(k)
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(k)
1:T ) has the property:
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where the definition of Q̃ is in (9) of the paper. Equation (1) holds because we update A1 to
be A(k+1)

1 using ridge regression: A(k+1)
1 = arg min Q̃(A1|A(k)

1:T ,B
(k)
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because Q̃(A
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the first term of the objective function using inequality (6) of the paper.
The property above indicates that after one single update of matrix A1, the values of

the objective function is non-increasing. Applying a similar argument for all other matrices
A2,A3, . . . ,AT ,B1,B2, . . . ,BT leads to a chain of inequalities:
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which proves that the each update of At or Bt goes towards a descent direction.

A.2. Proof of Theorem 2.2.

PROOF. Note that in appendix A.1, we proved inequality (2). More generally, for any
arbitrary t, we have the following:
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The right hand side of (3) is the difference of Q̃(At|A(k+1)
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Note that this is a quadratic function of At thus higher order (≥ 3) derivatives are all zero.
We can do a Taylor expansion for Q̃(A
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where H = (1 + λ2(1 + I{2≤t≤T−1}) + λ3)(B
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t + λ1I . We have ∇Q̃ = 0 since
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that:
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Similarly for any updates of Bt, we have:
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Since (5) and (6) hold for all At and Bt, we can sum the ∆A
k,t,∆

B
k,t across all t. Note that∑

t(∆
A
k,t + ∆B

k,t) = ∆k. The right-hand side is the lower bound for ∆k that we want.

A.3. Proof of Theorem 2.3.

PROOF. The first result can be easily proved by noting that
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Given the assumption that lLI ≤ (A
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t )TA
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t ≤ lU I, lLI ≤ (B
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t ≤ lU I for all t, k.

Equations (18) and (19) of the paper can be proved with the following inequalities:
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Given the lower bound in theorem 2.2 and the inequality in (7), we have:
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The last step uses the left inequality in (8) and (9). This proves (18). Using the right-hand
side inequality in (8) and (9) yields (19).
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